

Solutia Inc. 575 Maryville Centre Drive St. Louis, Missouri 63141

Tel: 314-674-3312 Fax: 314-674-8808

gmrina@eastman.com

April 17, 2015

Ms. Carolyn Bury - LU-9J U.S. EPA Region 5 Corrective Action Section 77 West Jackson Boulevard Chicago, IL 60604-3507

Re:

Long-Term Monitoring Program 1st Ouarter 2015 Data Report

Solutia Inc., W. G. Krummrich Plant, Sauget, IL

Dear Ms. Bury:

Enclosed please find the Long-Term Monitoring Program 1st Quarter 2015 Data Report for Solutia Inc.'s W. G. Krummrich Plant, Sauget, IL. Results from supplemental piezometers GWE-1D, 2D, 3D, 5S, and 5M and supplemental wells GWE-5D and ESL-MW-A, C1, and D1 are included in this report. Also included are a letter report (Appendix F) about the January 2015 installation of supplemental wells PM1M and PM1D in IDOT right-of-way, north of ESL-MW-D1, and the first of four planned quarterly samplings of those wells in February 2015.

If you have any questions or comments regarding this report, please contact me at (314) 674-3312 or gmrina@eastman.com

Sincerely,

Gerald M. Rinaldi

Manager, Remediation Services

Sull n. Killi

Enclosure

cc: Distribution List

DISTRIBUTION LIST

Long-Term Monitoring Program

1st Quarter 2015 Data Report
Solutia Inc., W. G. Krummrich Plant, Sauget, IL

USEPA

Stephanie Linebaugh USEPA Region 5 - SR6J, 77 West Jackson Boulevard, Chicago, IL 60604

Solutia

Donn Haines

500 Monsanto Avenue, Sauget, IL 62206-1198

GSI Environmental (CD only)

Chuck Newell

2211 Norfolk Street, Suite 1000, Houston, TX 77098-4044

GROUNDWATER MONITORING REPORT

LONG-TERM MONITORING PROGRAM SOLUTIA INC., W.G. KRUMMRICH FACILITY SAUGET, ILLINOIS

Prepared For: Solutia Inc.

575 Maryville Centre Drive St. Louis, MO 63141 USA

Submitted By: Golder Associates Inc.

820 S. Main Street, Suite 100 St. Charles, MO 63301 USA

April 2015 140-3345

A world of capabilities delivered locally

TABLE OF CONTENTS

1.0	INTRODUCTION	1
2.0	FIELD ACTIVITIES	3
2.1	Water Level Measurement	3
2.2	Groundwater Sample Collection	3
2.3	Quality Assurance and Sample Handling	4
2.4	Biodegradation Sampling	5
2.5	Decontamination and Investigation Derived Waste	
3.0	QUALITY ASSURANCE	6
4.0	OBSERVATIONS	7
4.1	Benzene	
4.2	Chlorobenzenes (Total)	8
4.3	Semi-Volatile Organic Compounds	
4.4	Monitored Natural Attenuation	9
5.0	CLOSING	9
6.0	REFERENCES	10

i

List of Figures

	011 1 11 11	
Figure 1	Site Location Man	١

Site Location Map Long-Term Monitoring Program Well Locations Figure 2

Potentiometric Surface Map Middle/Deep Hydrogeologic Unit Benzene and Total Chlorobenzenes Results Figure 3

Figure 4

List of Tables

Table 1	Monitoring Well Gauging Information
Table 2	Groundwater Analytical Results
Table 3	Monitored Natural Attenuation Results

List of Appendices

Appendix A	Groundwater Purging and Sampling Forms
Appendix B	Chains-of-Custody
Appendix C	Quality Assurance Report
Appendix D	Groundwater Analytical Results (including data validation reports)
Appendix E	Microbial Insights Data Package
Appendix F	PM1M and PM1D Well Installation Letter Report

1.0 INTRODUCTION

Golder Associates Inc. (Golder) is pleased to submit this report summarizing the 1st Quarter 2015 (1Q15) Long-Term Monitoring Program (LTMP) groundwater sampling activities at the Solutia Inc. (Solutia) W.G. Krummrich (WGK) facility (Site) in Sauget, Illinois. The facility is located at 500 Monsanto Avenue, Sauget, Illinois as shown on Figure 1.

The 1Q15 sampling event was performed in general accordance with the Revised LTMP Work Plan (Work Plan) (Solutia 2009). Work conducted during the LTMP is designed to evaluate the effectiveness of monitored natural attenuation (MNA). The effectiveness of MNA at the Site, is shown by the following:

- A clear and meaningful trend of decreasing contaminant mass
- Data that indirectly demonstrate the types and rates of natural attenuation process active at the Site
- Data that directly demonstrate the occurrence of biodegradation processes at the Site

The Work Plan addresses quarterly sampling requirements from the United States Environmental Protection Agency's (USEPA) February 26, 2008, Final Decision (USEPA, 2008). According to the Work Plan, ten (10) groundwater samples are to be collected from monitoring wells from two (2) source areas, former Benzene Storage Area and former Chlorobenzene Process Area; four (4) monitoring wells located downgradient of the former Benzene Storage Area; and four (4) monitoring wells located downgradient of the former Chlorobenzene Process Area. Monitoring wells are located in the Shallow Hydrogeologic Unit (SHU), Middle Hydrogeologic Unit (MHU) and Deep Hydrogeologic Unit (DHU). One (1) monitoring well is screened in the SHU at the former Benzene Storage Area. The remaining nine (9) wells are screened in the MHU and DHU. Analytical data from these wells are used to evaluate the attenuation processes in the America Bottoms aquifer, as impacted groundwater from these source areas migrates toward and discharges to the Mississippi River.

In addition to the monitoring wells specified in the Work Plan, the USEPA has also requested that groundwater samples be collected from eleven (11) additional monitoring wells and piezometers approximately 1.0 to 1.5 miles north of the Site. Two (2) of the eleven (11) wells, PM1M and PM1D, were installed in January 2015 for monitoring purposes and inclusion in the quarterly LTMP sampling event. The PM1M and PM1D Well Installation Letter Report is included in Appendix F.

The scope of work detailed in the Work Plan is summarized below.

Twenty-one (21) monitoring wells and piezometers are sampled during the LTMP event. The locations of the monitoring wells, piezometers and source areas are shown on Figure 2 and the sample locations are included on the table below.

	-00.00				
_	-	- 1			
=:-	40.0				
			507		
	The state of	75.			
_	-		Village		_
			100		
	_		_		

Area	Location Relative to Area	Sample Identification
	Source Area Well	BSA-MW-1S
		BSA-MW-2D
Former Benzene Storage	Downgradient	BSA-MW-3D
	Downgradient	BSA-MW-4D
		BSA-MW-5D
	Source Area Well	CPA-MW-1D
		CPA-MW-2D
Former Chlorobenzene Process	Downgradient	CPA-MW-3D
	Downgradient	CPA-MW-4D
		CPA-MW-5D
		ESL-MW-A
		ESL-MW-C1
		ESL-MW-D1
		GWE-1D
		GWE-2D
Supplemental Wells North of the Site		GWE-3D
		GWE-5D
		GWE-5M
		GWE-5S
		PM1D
		PM1M

Water levels in the monitoring wells and piezometers are measured quarterly and total depths are measured in the 1st quarter of each year.

During the quarterly sampling events, monitoring wells and piezometers are sampled for the following volatile organic compound (VOC) analytes: benzene; chlorobenzene; 1,2-dichlorobenzene; 1,3-dichlorobenzene; and 1,4-dichlorobenzene. During the 1st and 3rd quarters, monitoring wells and piezometers are sampled for the following semi-volatile organic compound (SVOC) analytes: 4-chloroaniline (CPA-MW-3D, CPA-MW-4D and CPA-MW-5D); 2-chlorophenol (BSA and CPA wells); 1,2,4-trichlorobenzene (BSA and CPA wells); and 1,4-dioxane (BSA-MW-2D, BSA-MW-3D, BSA-MW-4D, and BSA-MW-5D). The following MNA parameters are sampled quarterly to evaluate active natural attenuation occurring at the Site:

- Electron Donors total and dissolved organic carbon
- Electron Acceptors iron, manganese, nitrate, sulfate
- Biodegradation Byproducts carbon dioxide, chloride, methane
- Biodegradation Indicators alkalinity

Microbial Insights BioTrap® samplers for Phospholipid Fatty Acid (PLFA) analysis and Stable Isotope Probes (SIPs) baited with benzene or chlorobenzene are deployed quarterly to demonstrate the occurrence of biodegradation occurring at the Site.

Mississippi River surface water and sediment samples are scheduled to be collected on a semi-annual basis (1st and 3rd quarter) to assess the impact of contaminated groundwater discharging into the River north of the Groundwater Migration Control System (GMCS). Due to low river levels during the 1Q15 LTMP sampling event, surface water and sediment samples were not collected.

2.0 FIELD ACTIVITIES

Golder conducted 1Q15 sampling events between February 2 and February 6, 2015. Activities were performed in general accordance with the Work Plan.

2.1 Water Level Measurement

Prior to sampling during the 1Q15 event, Golder performed a synoptic round of water level measurements and total depth measurements at 77 monitoring wells and piezometers on January 29 and January 30, 2015. The following monitoring well and piezometer series are included in the LTMP:

- BSA-series
- CPA-series
- ESL-series
- GM-series
- GWE-series
- K-series
- PS-MW-series
- PMA-series
- PM-series
- Piezometer clusters installed for Sauget Area 2 RI/FS and WGK CA-750 Environmental Indicator projects

An oil/water interface probe was used to measure the water level (to 0.01 feet) and, if present, detect and measure the thickness of non-aqueous phase liquid (NAPL). During the 1Q15 sampling event, NAPL was not detected in monitoring wells or piezometers. Total depths were measured during the 1Q15 event. The 1Q15 well gauging information is shown on Table 1. The information collected from the MHU and the DHU was used to create a groundwater potentiometric surface map, as shown on Figure 3.

2.2 Groundwater Sample Collection

Monitoring wells and piezometers sampled during the 1Q15 LTMP event were purged and sampled using low-flow sampling techniques, low-density polyethylene tubing (LDPE) and a submersible, peristaltic

(GWE-3D) or bladder (GWE-1D and GWE-2D) pump. The pump intake was placed at approximately the middle of the screened interval for each well. Purging was conducted at a rate of approximately 300 mL/min to reduce drawdown. Drawdown was measured throughout purging activities to ensure that it did not exceed 25% of the distance between the pump intake and the top of the screen. Measurement of field parameters began once the flow rate and drawdown were stable. Parameters were measured for each system volume purged using a SmartTROLL™ multi-parameter meter. The system volume includes the volume of the tubing, the volume of the pump and the volume of flow-through cell containing the multi-parameter meter. Samples were collected after field parameters were stabilized within the ranges below for three (3) consecutive measurements:

- Dissolved Oxygen (DO): +/- 10% or +/- 0.2 mg/L, whichever is greatest
- Oxidation-Reduction Potential (ORP): +/- 20 mV
- pH: +/-0.2 standard units
- Specific Conductivity: +/- 3%

The flow rate was adjusted as needed to maintain approximately 300 mL/min during sampling activities. To reduce possible sample cross contamination, the flow-through cell was bypassed and gloves were replaced prior to sampling.

Sample bottles were provided by TestAmerica Laboratories, Inc. (TestAmerica) for the following analyses:

- VOCs USEPA SW-846 Method 8260B
- SVOCs USEPA SW-846 Method 8270D
- MNA parameters alkalinity and carbon dioxide (USEPA Method 310.1), chloride (USEPA Method 352.5), total and dissolved iron and total and dissolved manganese (USEPA SW-846 Method 6010C), methane, ethane and ethylene (RSK-175), nitrate (USEPA Method 353.2), sulfate (USEPA Method 375.4), and total and dissolved organic carbon (USEPA Method 415.1)

VOC and SVOC sample bottles were filled first followed by gas sensitive parameters and general chemistry parameters. Ferrous iron was field analyzed with a HACH 890 Colorimeter and HACH AccuVac® ampules. Samples collected for ferrous iron and dissolved analyses were field filtered using an in-line 0.2 micron disposable filter. Groundwater purging and sampling forms are included in Appendix A.

2.3 Quality Assurance and Sample Handling

Three (3) analytical duplicates (AD), three (3) equipment blanks (EB) and two (2) matrix spike/matrix spike duplicate (MS/MSD) pairs were collected during the 1Q15 LTMP sampling event. Laboratory provided trip blanks were included in each cooler containing samples for VOC analysis, for a total of six (6) trip blanks. Sample bottles were labeled with the date and time of sample collection, sampler initials, analysis requested, preservative used, and sample identification based on the following nomenclature "AAA-MW#-MMYY-QA/QC" or "BBBB-MMYY-QA/QC" where:

- "AAA" denotes "Benzene Storage Area (BSA)", "Chlorobenzene Process Area (CPA)", "East St. Louis (ESL)", or "Groundwater Elevation (GWE)" and "MW#" denotes "Monitoring Well Number"
- "BBBB" denotes PM1M or PM1D for monitoring wells installed in January 2015
- "MMYY" denotes month and year of sampling quarter, e.g.: February (1st quarter), 2015 (0215)
- "QA/QC" denotes QA/QC sample
 - AD Analytical Duplicate
 - EB Equipment Blank
 - MS or MSD Matrix Spike or Matrix Spike Duplicate

Samples that were field filtered with an in-line 0.2 micron filter include "F(0.2)" prior to the "MMYY" portion of the sample identification. Sample information was recorded on a chain-of-custody (COC) that included project identification, sample identification, date and time of sample collection, analysis requested, preservative used, sample matrix and type, number of sample containers, sampler signature, and date COC was completed. Copies of the COCs are included in Appendix B.

Directly after sampling, sample bottles were placed in an iced cooler to maintain a sample temperature of approximately 4°C. Prior to sample shipment, samples and ice were placed inside two (2) contractor trash bags. The bags were tied and the cooler was sealed between the lid and sides with a signed and dated custody seal. Samples were shipped overnight via FedEx to the TestAmerica facility in Savannah, Georgia.

2.4 Biodegradation Sampling

Bio-Trap® and SIP results are evaluated to provide biodegradation potential information in the SHU, the MHU and the DHU. Bio-Trap® samplers and SIPs are passive sampling tools that collect microbes across the samplers membrane that is, after time, analyzed. SIPs are baited with a specially synthesized form of the contaminant (i.e., benzene, chlorobenzene) in order to measure the degradation of a specific contaminant.

Bio-Trap® samplers and Stable Isotope Probing samplers (SIPs), provided by Microbial Insights, Inc. in Rockford, Tennessee, were deployed on January 5, 2015 in monitoring wells downgradient of the former Chlorobenzene Process Area (CPA-MW-1D through CPA-MW-5D) and downgradient of the former Benzene Storage Area (BSA-MW-1S and BSA-MW-2D through BSA-MW-5D) for PLFA. A benzene SIP was deployed in monitoring well BSA-MW-2D and a chlorobenzene SIP was deployed in monitoring well CPA-MW-3D. Bio-Trap® samplers and SIPs were weighted and fastened to a stainless steel cable. The cable was secured to the well cap and the Bio-Trap® or SIP was lowered into the well and placed in the middle of the well screen.

On January 29, 2015, Bio-Trap® samplers and SIPs were collected from the wells, placed in laboratory provided bags, labeled with appropriate well identification, placed in a cooler with ice, properly sealed, and shipped overnight to the Microbial Insights, Inc. facility in Rockford, Tennessee for analysis.

6

2.5 Decontamination and Investigation Derived Waste

Sampling equipment was decontaminated prior to mobilizing to the Site, between sample locations and prior to demobilizing from the Site. Non-dedicated sampling equipment was decontaminated between samples with a non-phosphatic detergent solution and a deionized water rinse.

Investigation derived waste (IDW) was placed in 55-gallon drums, labeled with the generation date and staged for disposal by Solutia. IDW such as gloves and other disposable sampling equipment was bagged for disposal by Solutia.

3.0 QUALITY ASSURANCE

Sample results were provided by TestAmerica in electronic format and reviewed for quality and completeness by Golder in accordance with the Work Plan. Sample results are included in Appendix D. Results were submitted in six (6) sample delivery groups (SDGs) as follows:

Sample Delivery Group (SDG)	Sample Identification			
	PM1M-0215			
	PM1D-0215			
	PM1D-0215-AD			
KPS135	ESL-MW-A-0215			
14. 5.155	ESL-MW-C1-0215			
	ESL-MW-C1-0215-EB			
	ESL-MW-D1-0215			
	1Q15 LTM Trip Blank #1			
	BSA-MW-3D-0215			
KPS136	BSA-MW-3D-0215-EB			
6.00	CPA-MW-5D-0215			
	1Q15 LTM Trip Blank #3			
	GWE-3D-0215			
	GWE-5S-0215			
KPS137	GWE-5M-0215			
	GWE-5D-0215			
	1Q15 LTM Trip Blank #2			
	GWE-1D-0215			
KPS138	GWE-2D-0215			
	1Q15 LTM Trip Blank #3			

	BSA-MW-2D-0215				
	BSA-MW-4D-0215				
	BSA-MW-5D-0215				
	CPA-MW-2D-0215				
KPS139	CPA-MW-2D-0215-AD				
	CPA-MW-3D-0215				
	CPA-MW-3D-0215-AD				
	CPA-MW-4D-0215				
	1Q15 LTM Trip Blank #4				
	BSA-MW-1S-0215				
KPS140	BSA-MW-1S-0215-EB				
NF3140	CPA-MW-1D-0215				
	1Q15 LTM Trip Blank #5				

Golder completed validation of the analytical data following the general guidelines in Section 4.4 Data Review and Validation of the Work Plan. The Work Plan specifies that the most recent versions of the national data validation guidelines be used for data review. The following guidelines were generally used:

- USEPA Contract Laboratory Program National Functional Guidelines for Superfund Organic Methods Data Review, EPA-540-R-08-01, June 2008
- USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Superfund Data Review, EPA 540-R-10-011, January 2010

Although some data required qualifications due to quality control criteria that were not achieved, the data were deemed usable. The completeness for the data set was 100%.

4.0 OBSERVATIONS

Groundwater analytical data for VOCs, SVOCs and MNA parameters are discussed below and presented in Table 2 and 3, respectively.

4.1 Benzene

Benzene was detected in ten (10) of the twenty-one (21) monitoring wells and piezometers at concentrations ranging from 2.9 μ g/L (GWE-5D) to 1,000,000 μ g/L (BSA-MW-1S). Benzene results are summarized below.

- Former Benzene Storage Area: Benzene was detected in the former Benzene Storage Area source area well (BSA-MW-1S) at a concentration of 1,000,000 μg/L.
- Downgradient of Former Benzene Storage Area: Benzene was detected in four (4) of four (4) wells downgradient of the former Benzene Storage Area with concentrations ranging from 30 μg/L (BSA-MW-4D), in the DHU north of the GMCS, to 64,000 μg/L (BSA-MW-2D).
- Former Chlorobenzene Process Area: Benzene was detected in the former Chlorobenzene Process Area source area well (CPA-MW-1D) at a concentration of 5,600 μg/L.

- Downgradient of Former Chlorobenzene Process Area: Benzene was detected in one (1) of four (4) wells downgradient of the former Chlorobenzene Process Area at a concentration of 6,000 μg/L / 5,800 μg/L (CPA-MW-3D and AD).
- North of the Site: Benzene was detected in three (3) of eleven (11) wells and piezometers north of the Site at concentrations of 2.9 μg/L (GWE-5D), 30 μg/L (ESL-MW-D1) and 33 μg/L (GWE-3D).

4.2 Chlorobenzenes (Total)

Total chlorobenzenes (i.e., sum of chlorobenzene, 1,2-dichlorobenzene, 1,3-dichlorobenzene, and 1,4-dichlorobenzene) were detected in fifteen (15) of the twenty-one (21) wells at concentrations ranging from 3.9 μ g/L (ESL-MW-C1) to 43,100 μ g/L (CPA-MW-1D). Total chlorobenzenes results are summarized below.

- <u>Former Benzene Storage Area:</u> Total chlorobenzenes were not detected in the former Benzene Storage Area source area well (BSA-MW-1S).
- Downgradient of Former Benzene Storage Area: Total chlorobenzenes were detected in three (3) of four (4) wells downgradient of the former Benzene Storage Area with concentrations ranging from 240 μg/L (BSA-MW-5D) to 2,070 μg/L (BSA-MW-4D) in the DHU north of the GMCS.
- Former Chlorobenzene Process Area: Total chlorobenzenes were detected in the former Chlorobenzene Process Area source area well (CPA-MW-1D) at a concentration of 43,100 μg/L.
- Downgradient of Former Chlorobenzene Process Area: Total chlorobenzenes were detected in four (4) of four (4) wells downgradient of the former Chlorobenzene Process Area with concentrations ranging from 160 μg/L / 160 μg/L (CPA-MW-3D and AD) to 40,260 / 42,290 μg/L (CPA-MW-2D and AD). Total chlorobenzenes were detected at a concentration of 1,800 μg/L (CPA-MW-5D) north of the GMCS.
- North of the Site: Total chlorobenzenes were detected in seven (7) of eleven (11) wells and piezometers north of the Site with concentrations ranging from 3.9 μg/L (ESL-MW-C1) to 1,830 μg/L (GWE-3D).

4.3 Semi-Volatile Organic Compounds

On a semi-annual basis (1st and 3rd quarter) specific SVOCs are analyzed at various LTMP wells. The CPA and BSA wells included in the LTMP event were analyzed for 2-chlorophenol and 1,2,4-trichlorobenzene. In addition, wells BSA-MW-2D, BSA-MW-3D, BSA-MW-4D, and BSA-MW-5D were analyzed for 1,4-dioxane, while wells CPA-MW-3D, CPA-MW-4D and CPA-MW-5D were analyzed for 4-chloroaniline.

- <u>Former Benzene Storage Area:</u> 2-Chlorophenol and 1,2,4-trichlorobenzene were not detected in the former Benzene Storage Area source area well (BSA-MW-1S).
- Downgradient of Former Benzene Storage Area: SVOCs were not detected downgradient of the former Benzene Storage Area.
- Former Chlorobenzene Process Area: 1,2,4-Trichlorobenzene was detected in the former Chlorobenzene Process Area source area well (CPA-MW-1D) at a concentration of 380 μg/L.

Downgradient of Former Chlorobenzene Process Area: 4-Chloroaniline was detected in CPA-MW-3D / AD and CPA-MW-4D at 28 / 28 μg/L and 130 μg/L respectively, in wells downgradient of the former Chlorobenzene Process Area. 2-Chlorophenol was detected in CPA-MW-2D and CPA-MW-5D at 35 μg/L and 22 μg/L respectively, in wells downgradient of the former Chlorobenzene Process Area.

4.4 Monitored Natural Attenuation

MNA parameter data for this quarter are presented in Table 3. Laboratory results for PLFA and SIP analysis are included in Appendix E. The SIP study (Appendix E) states the following, "Evidence for biodegradation of benzene in BSA-MW-2D-0215 and chlorobenzene in CPA-MW-3D-0215 was inconclusive, as the ¹³C-enriched biomass fell below the detection limit in both samples". Dissolved inorganic carbon (DIC) data for BSA-MW-2D-0215 indicate that "benzene had been mineralized during the deployment period." Although DIC data for CPA-MW-3D-0215 indicate that "little or no chlorobenzene had been mineralized," the community structure contains contaminant-reducing bacteria. The PLFA analysis in the remaining BSA and CPA wells also show a community structure containing contaminant-reducing bacteria.

5.0 CLOSING

Golder appreciates the opportunity to assist Solutia Inc. with the Long-Term Monitoring Program sampling events. Please contact the undersigned if you need additional information.

Sincerely,

GOLDER ASSOCIATES INC.

Lori A. Bindner Geological Engineer

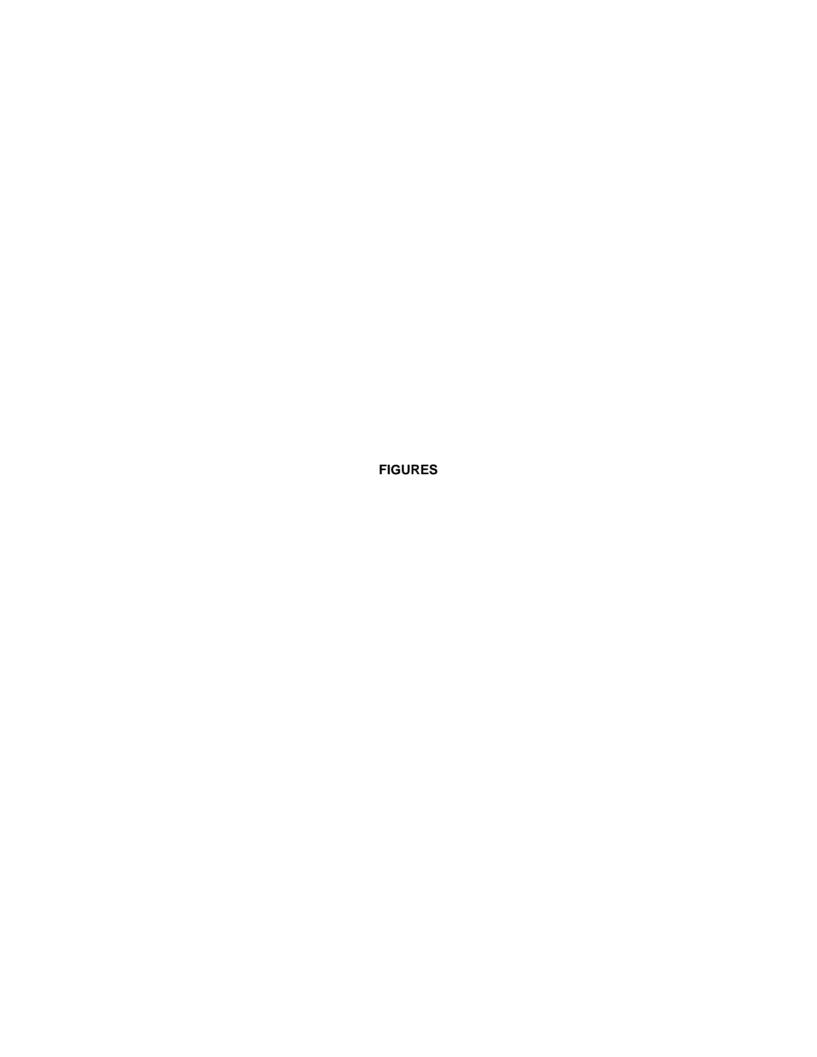
Jon Bindner

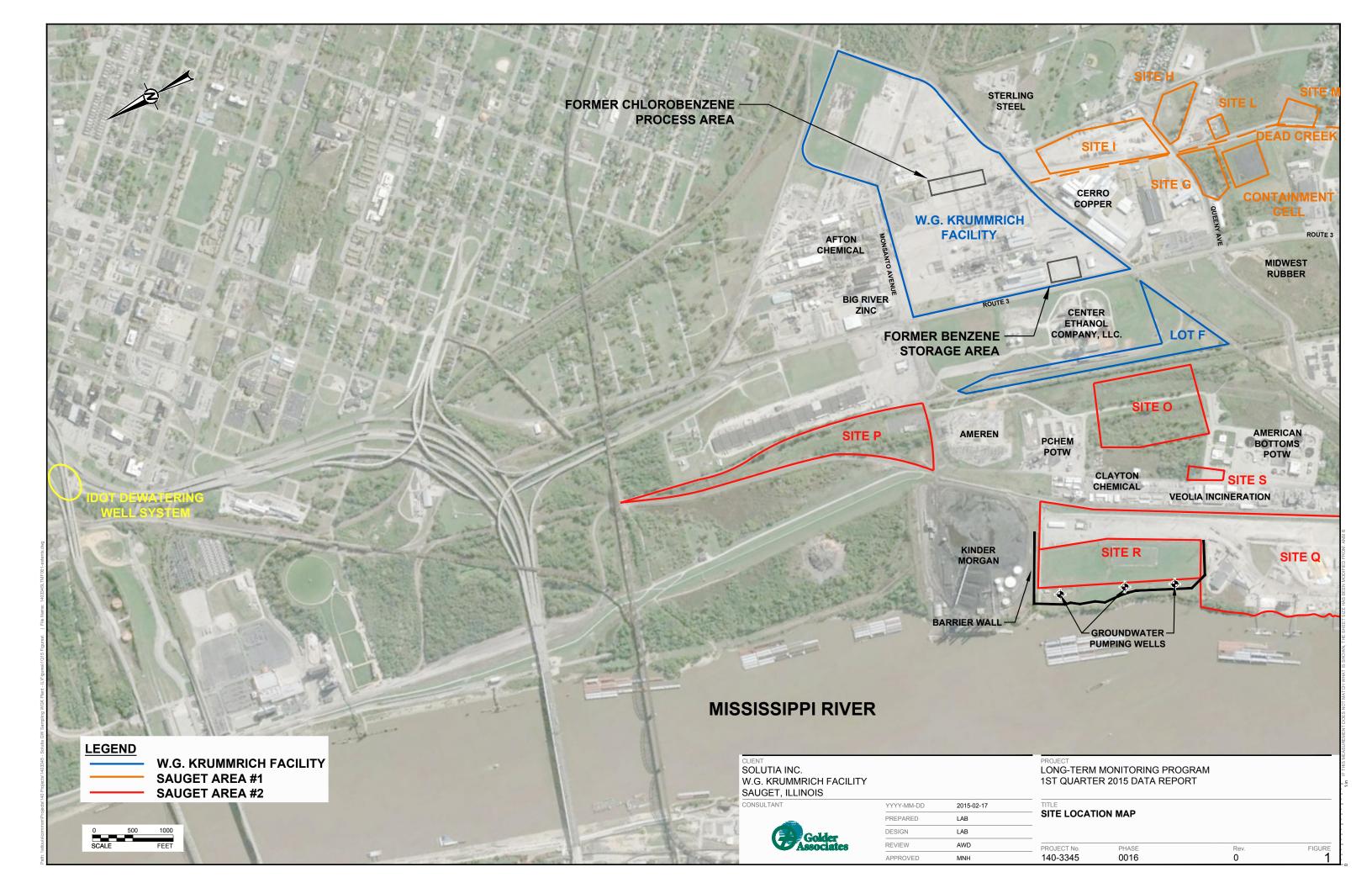
Mark N. Haddock, R.G., P.E. Associate, Senior Consultant

Amanda W. Derhake, Ph.D., P.E. Senior Project Engineer

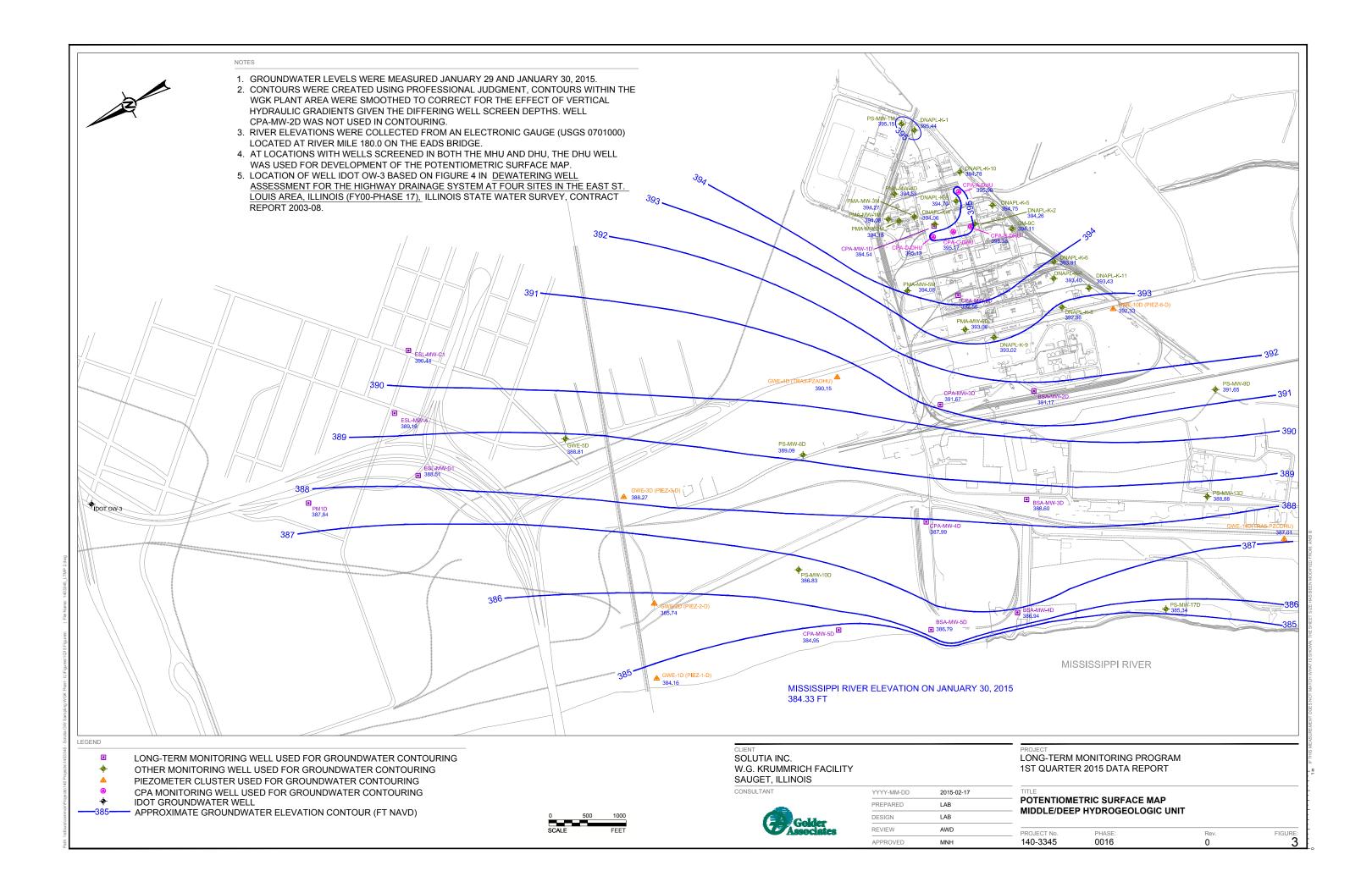
6.0 REFERENCES

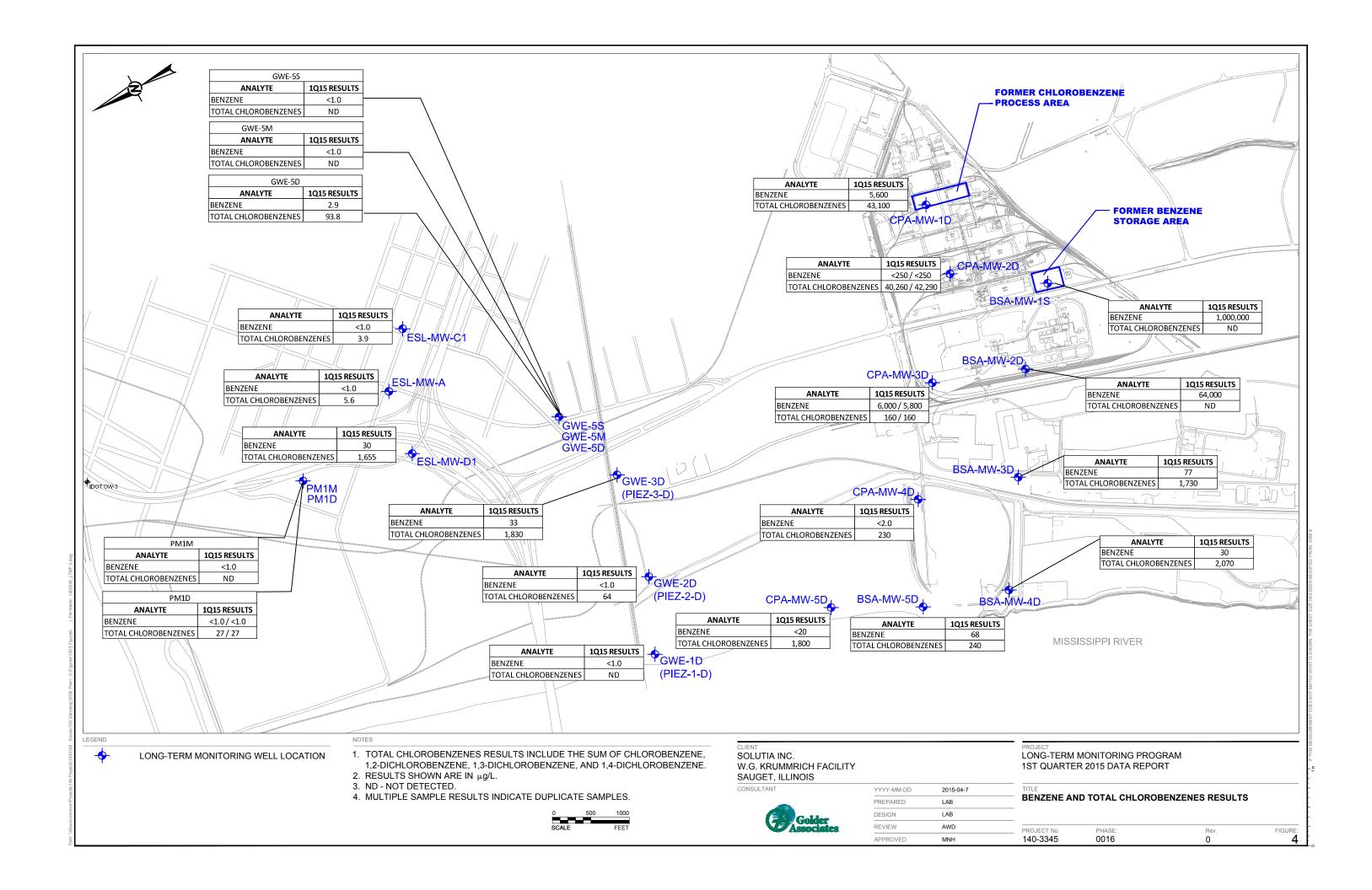
Solutia Inc., 2009. Revised Long Term Monitoring Program Work Plan, Solutia Inc., W.G. Krummrich Facility, Sauget, Illinois, May 2009.


10


USEPA, 2010. Contract Laboratory Program National Functional Guidelines for Inorganic Superfund Data Review.


USEPA, 2008. Contract Laboratory Program national Functional Guidelines for Superfund Organic Methods Data Review.


USEPA, 2008. Final Decision, Solutia Inc., Sauget, Illinois, February 2008.



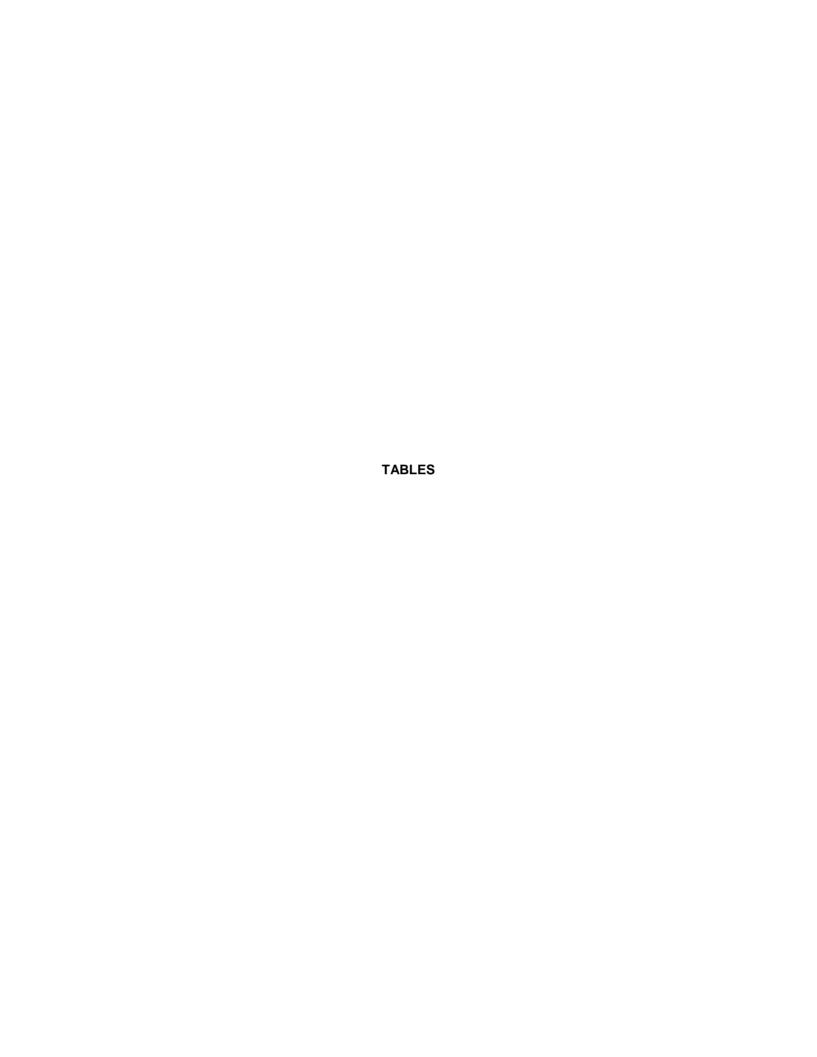


Table 1 Monitoring Well Gauging Information 1Q15 Long-Term Monitoring Program Solutia Inc., W.G. Krummrich Facility Sauget, Illinois

		Moi	nitoring Well	Construction I	Data		1Q15 -	January 29 a	and January 30), 2015
	Ground	Top of	Top of	Bottom of	Top of	Bottom of				
Well Identification	Surface	Casing	Screen	Screen	Screen	Screen	Water Level	Depth to	Total Depth ²	Water Level
	Elevation ¹	Elevation ¹	Depth	Depth	Elevation ¹	Elevation ¹	(ft btoc)	NAPL	(ft btoc)	Elevation ¹
	(ft)	(ft)	(ft bgs)	(ft bgs)	(ft)	(ft)	` ′	(ft btoc)	, ,	(ft)
SHU 395-380 ft NAV	D 88									
BSA-MW-1S	409.49	412.31	19.68	24.68	389.81	384.81	19.21	NP	27.31	393.10
GWE-5S	408.47	408.05	17.91	27.91	390.56	380.56	18.98	NP	27.79	389.07
MHU 380-350 ft NA										
GWE-5M	408.59	408.20	48.10	58.10	360.49	350.49	19.18	NP	58.03	389.02
PMA-MW-1M	410.32	410.08	54.54	59.54	355.78	350.78	16.00	NP	59.60	394.08
PMA-MW-2M	412.26	411.93	56.87	61.87	355.39	350.39	17.75	NP	61.27	394.18
PMA-MW-3M	412.36	412.10	57.07	62.07	355.29	350.29	17.83	NP	61.81	394.27
PMA-MW-5M	411.27	410.97	52.17	57.17	359.10	354.10	16.89	NP	56.98	394.08
PS-MW-1M	409.37	412.59	37.78	42.78	371.59	366.59	17.44	NP	46.05	395.15
PM1M	413.07	412.80	51.64	61.41	361.43	351.66	25.01	NP	60.59	387.79
DHU 350 ft NAVD 88		445.42	60.03	72.02	242.00	220.00	22.00	ND	77.00	204.47
BSA-MW-2D	412.00	415.13	68.92	73.92	343.08	338.08	23.96	NP	77.00	391.17
BSA-MW-3D	412.91	415.74 424.69	107.02	112.02	305.89	300.89	27.14	NP NP	114.75	388.60
BSA-MW-4D	425.00	424.69 420.49	118.54	123.54	306.46	301.46	37.75		123.12	386.94
BSA-MW-5D CPA-A-DHU	420.80 413.95	420.49 416.24	115.85 108.00	120.82 113.30	304.95 305.95	299.95 300.65	33.70 20.26	NP NP	120.89 115.15	386.79 395.98
CPA-B-DHU	409.12	408.68	108.00	106.50	305.95	300.63	13.30	NP NP	105.51	395.38
CPA-C-DHU	408.92	408.57	101.00	106.00	307.92	302.02	13.40	NP	105.44	395.17
CPA-D-DHU	409.63	412.20	101.00	105.90	308.63	303.73	17.07	NP	108.24	395.17
CPA-MW-1D	408.62	412.23	66.12	71.12	342.50	337.50	17.69	NP	74.69	394.54
CPA-MW-2D	408.51	408.20	99.96	104.96	308.55	303.55	15.64	NP	104.56	392.56
CPA-MW-3D	410.87	410.67	108.20	113.20	302.67	297.67	19.00	NP	112.76	391.67
CPA-MW-4D	421.57	421.20	116.44	121.44	305.13	300.13	33.21	NP	120.98	387.99
CPA-MW-5D	411.03	413.15	107.63	112.63	303.40	298.40	28.20	NP	114.64	384.95
DNAPL-K-1	413.07	415.56	108.20	123.20	304.87	289.87	20.12	NP	123.10	395.44
DNAPL-K-2	407.94	407.72	97.63	112.63	310.31	295.31	13.46	NP	112.40	394.26
DNAPL-K-3	412.13	415.91	104.80	119.80	307.33	292.33	21.21	NP	123.28	394.70
DNAPL-K-4	409.48	412.53	102.55	117.55	306.93	291.93	18.47	NP	118.21	394.06
DNAPL-K-5	412.27	411.91	102.15	117.15	310.12	295.12	17.16	NP	116.54	394.75
DNAPL-K-6	410.43	410.09	102.47	117.47	307.96	292.96	16.18	NP	116.87	393.91
DNAPL-K-7	408.32	407.72	100.40	115.40	307.92	292.92	14.32	NP	115.31	393.40
DNAPL-K-8	408.56	411.38	102.65	117.65	305.91	290.91	18.52	NP	117.56	392.86
DNAPL-K-9	406.45	405.97	97.42	112.42	309.03	294.03	12.95	NP	111.05	393.02
DNAPL-K-10	413.50	413.25	105.43	120.43	308.07	293.07	18.47	NP	120.26	394.78
DNAPL-K-11	412.20	411.78	105.46	120.46	306.74	291.74	18.35	NP	120.18	393.43
GM-9C	409.54	411.21	88.00	108.00	321.54	301.54	17.10	NP	108.23	394.11
GWE-1D	412.80	415.60	117.00	127.00	295.80	285.80	31.44	NP	128.22	384.16
GWE-2D	417.45	417.14	127.00	137.00	290.45	280.45	31.40	NP	136.59	385.74
GWE-3D	415.03	417.66	104.60	114.60	313.06	303.06	29.39	NP	114.88	388.27
GWE-4D	406.05	405.74	74.00	80.00	332.05	326.05	15.59	NP	78.75	390.15
GWE-5D	408.79	408.38	100.43	105.43	308.36	303.36 297.65	19.57	NP	105.14	388.81
GWE-10D GWE-14D	410.15 420.47	412.87 422.90	102.50 90.00	112.50 96.00	307.65 330.47	324.47	20.54 35.89	NP NP	114.81 97.00	392.33 387.01
ESL-MW-A	412.93	412.59	105.50	110.50	307.43	302.43	23.43	NP	108.63	389.16
ESL-MW-C1	410.09	409.79	103.30	109.00	306.09	301.09	19.35	NP	109.87	390.44
ESL-MW-D1	416.38	416.04	114.00	119.00	302.38	297.38	27.53	NP	119.22	388.51
PMA-MW-4D	411.22	410.88	68.84	73.84	342.38	337.38	16.35	NP	73.38	394.53
PMA-MW-6D	407.63	407.32	96.49	101.49	311.14	306.14	14.24	NP	101.22	393.08
PS-MW-6D	404.11	406.63	102.32	107.32	304.31	299.31	17.54	NP	109.81	389.09
PS-MW-9D	403.92	403.52	100.40	105.40	303.52	298.52	11.87	NP	105.00	391.65
PS-MW-10D	409.63	412.18	103.78	108.78	308.40	303.40	25.35	NP	111.25	386.83
PS-MW-13D	405.80	405.53	106.08	111.08	299.72	294.72	16.65	NP	110.55	388.88
PS-MW-17D	420.22	423.26	121.25	126.25	298.97	293.97	37.92	NP	133.90	385.34
SA2-MW-1D	403.79	406.03	105.01	115.01	301.02	291.02	25.89	NP	102.24	380.14

Notes

ft - feet

bgs - below ground surface btoc - below top of casing NP - no product observed SHU - shallow hydrogeologic u

SHU - shallow hydrogeologic unit MHU - middle hydrogeologic unit DHU - deep hydrogeologic unit Prepared By: LAB 2/10/2015 Checked By: EPW 2/26/2015 Reviewed By: AWD 2/26/2015

¹ - Elevation based on North American Vertical Datum (NAVD) 88 datum.

 $^{^{\}rm 2}$ - Total depths are measured annually during the first quarter of each year.

Table 2 Groundwater Analytical Results 1Q15 Long-Term Monitoring Program Solutia Inc., W.G. Krummrich Facility Sauget, Illinois

				VOCs (μg/L)				SVOCs	(μg/L)		
Sample Identification	Sample Date	Benzene	Chlorobenzene	1,2-Dichlorobenzene	1,3-Dichlorobenzene	1,4-Dichlorobenzene	4-Chloroaniline*	2-Chlorophenol*	1,4-Dioxane*	1,2,4-Trichlorobenzene*	
Benzene Storage Area											
BSA-MW-1S-0215	2/6/2015	1,000,000 D	<10,000	<10,000	<10,000	<10,000	NA	<11	NA	<11	
BSA-MW-2D-0215	2/5/2015	64,000 D	<1,000	<1,000	<1,000	<1,000	NA	<11	<11	<11	
BSA-MW-3D-0215	2/3/2015	77 D	1,400 D	<20	<20	330 D	NA	<11 J	<11 J	<11 J	
BSA-MW-4D-0215	2/5/2015	30 D	2,000 D	<20	<20	70 D	NA	<12	<12	<12	
BSA-MW-5D-0215	2/5/2015	68 D	240 D	<2.0	<2.0	<2.0	NA	<11	<11	<11	
Chlorobenzene Process	Area										
CPA-MW-1D-0215	2/6/2015	5,600 D	19,000 D	12,000 D	1,100 D	11,000 D	NA	<12	NA	380	
CPA-MW-2D-0215	2/5/2015	<250	31,000 D	260 D	300 D	8,700 D	NA	35 J	NA	<11	
CPA-MW-2D-0215-AD	2/5/2015	<250	32,000 D	300 D	290 D	9,700 D	NA	<11 J	NA	<11 J	
CPA-MW-3D-0215	2/5/2015	6,000 D	160 D	<100	<100	<100	28	<11	NA	<11	
CPA-MW-3D-0215-AD	2/5/2015	5,800 D	160 D	<100	<100	<100	28	<11	NA	<11	
CPA-MW-4D-0215	2/5/2015	<2.0	230 D	<2.0	<2.0	4.9 D	130	<10	NA	<10	
CPA-MW-5D-0215	2/3/2015	<20	1,800 D	<20	<20	<20	<21 J	22 J	NA	<11 J	
North of W.G. Krummrid	ch Facility										
ESL-MW-A-0215	2/2/2015	<1.0	1.6	2.2	<1.0	1.8	NA	NA	NA	NA	
ESL-MW-C1-0215	2/2/2015	<1.0	1.2	1.4	<1.0	1.3	NA	NA	NA	NA	
ESL-MW-D1-0215	2/2/2015	30 D	1,600 D	<10	<10	55 D	NA	NA	NA	NA	
GWE-1D-0215	2/4/2015	<1.0	<1.0	<1.0	<1.0	<1.0	NA	NA	NA	NA	
GWE-2D-0215	2/4/2015	<1.0	64	<1.0	<1.0	<1.0	NA	NA	NA	NA	
GWE-3D-0215	2/3/2015	33 D	1,700 D	<20	<20	130 D	NA	NA	NA	NA	
GWE-5S-0215	2/3/2015	<1.0	<1.0	<1.0	<1.0	<1.0	NA	NA	NA	NA	
GWE-5M-0215	2/3/2015	<1.0	<1.0	<1.0	<1.0	<1.0	NA	NA	NA	NA	
GWE-5D-0215	2/3/2015	2.9 D	84 D	<2.0	<2.0	9.8 D	NA	NA	NA	NA	
PM1M-0215	2/2/2015	<1.0	<1.0	<1.0	<1.0	<1.0	NA	NA	NA	NA	
PM1D-0215	2/2/2015	<1.0	27	<1.0	<1.0	<1.0	NA	NA	NA	NA	
PM1D-0215-AD	2/2/2015	<1.0	27	<1.0	<1.0	<1.0	NA	NA	NA	NA	

Notes

VOCs - volatile organic compounds

SVOCs - semi-volatile organic compounds

 $\ensuremath{^*}$ - samples are collected during the 1st and 3rd quarters

μg/L - micrograms per liter

< - result is non-detect, less than the reporting limit

J - result is an estimated value

D - compound analyzed at a dilution

AD - analytical duplicate

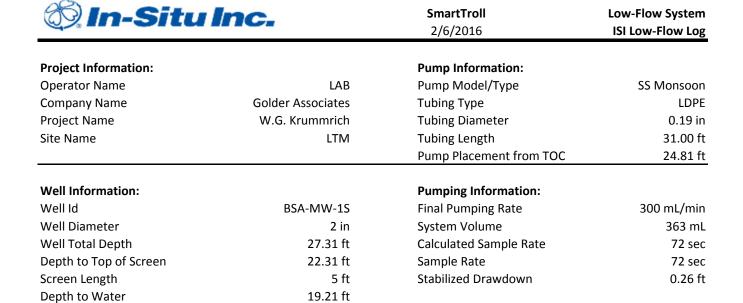
NA - sample not analyzed for select analyte

 $\boldsymbol{\textit{Bold}}$ - indicates concentration greater than reporting limit

Prepared By: EPW 3/23/2015 Checked By: LAB 4/7/2015 Reviewed By: AWD 4/10/2015

Table 3 **Monitored Natural Attenuation Results** 1Q15 Long-Term Monitoring Program Solutia Inc., W.G. Krummrich Facility Sauget, Illinois

		Monitored Natural Attenuation Parameters																
Sample Identification	Sample Date	Alkalinity (mg/L)	Carbon Dioxide (mg/L)	Chloride (mg/L)	Dissolved Oxygen (mg/L)	Ethane (ug/L)	Ethylene (ug/L)	Ferrous Iron (mg/L)	Iron (mg/L)	Iron, Dissolved (mg/L)	Manganese (mg/L)	Manganese, Dissolved (mg/L)	Methane (ug/L)	Nitrogen, Nitrate (mg/L)	Sulfate as SO4 (mg/L)	Total Organic Carbon (mg/l.)	Dissolved Organic Carbon (mg/L)	ORP (mV)
Benzene Storage Area	0 (0 (00.00																	
BSA-MW-1S-0215	2/6/2015	850	50	110 D	0.11	<1.1	<1.0	-	12	-	0.99	-	5,300	<0.050	140 D	39 D	-	-62.87
BSA-MW-1S-F(0.2)-0215	2/6/2015	-	-	-	-	-	-	>3.30	-	11	-	0.98	-	-	-	-	20 D	-
BSA-MW-2D-0215	2/5/2015	620	36	130 D	0.10	13	<1.0	-	4.3	-	0.64	-	19,000	<0.050	<5.0	11	-	-29.81
BSA-MW-2D-F(0.2)-0215	2/5/2015	-	-	-	-	-	-	>3.30	-	4.1	-	0.63	-	-	-	-	7.8	-
BSA-MW-3D-0215	2/3/2015	420	26	120 D	0.11	2.6	1.8	-	9.5	-	0.54	-	870	<0.050	120 D	4.0	-	-57.19
BSA-MW-3D-F(0.2)-0215	2/3/2015	-	-	-	-	-	-	>3.30	-	9.4	-	0.54	-	-	-	-	3.4	-
BSA-MW-4D-0215	2/5/2015	440	29	91 D	0.20	3.0	<1.0	-	6.7	-	0.56	-	320	<0.050	120 D	5.2	-	-21.47
BSA-MW-4D-F(0.2)-0215	2/5/2015	-	-	-	-	-	-	>3.30	-	6.6	-	0.57	-	-	-	-	4.8	-
BSA-MW-5D-0215	2/5/2015	1,200	63	220 D	0.12	19	<1.0	-	11	-	0.27	-	15,000	<0.050	<5.0	9.0	-	-64.42
BSA-MW-5D-F(0.2)-0215	2/5/2015	-	-	-	-	-	-	>3.30	-	11	-	0.26	-	-	-	-	9.1	-
Chlorobenzene Process Area								T			T			T	T			
CPA-MW-1D-0215	2/6/2015	750	5.0	91 D	0.11	12	<1.0	-	0.095	-	0.029	-	10,000	<0.050	<5.0	13	-	38.50
CPA-MW-1D-F(0.2)-0215	2/6/2015	-	-	-	-	-	-	0.00	-	0.071	-	0.029	-	-	-	-	11	-
CPA-MW-2D-0215	2/5/2015	420	21	55 D	0.30	3.8	<1.0	-	8.7	-	0.43	-	890	<0.050	56 D	8.1	-	-38.60
CPA-MW-2D-F(0.2)-0215	2/5/2015	-	-	-	-	-	-	>3.30	-	8.8	-	0.45	-	-	-	-	7.5	-
CPA-MW-3D-0215	2/5/2015	560	38	320 D	0.07	26	<1.0	-	13	-	0.76	-	22,000	<0.050	<5.0	8.8	-	-47.86
CPA-MW-3D-F(0.2)-0215	2/5/2015	-	-	-	-	-	-	>3.30	-	12	-	0.75	-	-	-	-	9.4	-
CPA-MW-4D-0215	2/5/2015	550	43	210 D	0.11	18	<1.0	-	15	-	0.39	-	14,000	<0.050	<5.0	8.5	-	-60.99
CPA-MW-4D-F(0.2)-0215	2/5/2015	-	-	-	-	-	-	>3.30	-	14	-	0.38	-	-	-	-	8.5	-
CPA-MW-5D-0215	2/3/2015	540	59	270 D	0.18	3.9	<1.0	-	17	-	0.59	-	660	< 0.050	37 D	5.8	-	-37.49
CPA-MW-5D-F(0.2)-0215	2/3/2015	-	-	-	-	-	-	>3.30	-	17	-	0.60	-	-	-	-	6.3	-
North of W.G. Krummrich Facilit	y																	
ESL-MW-A-0215	2/2/2015	280	25	80 D	0.49	<1.1	<1.0	-	11	-	0.37	-	3.5	0.33	540 D	3.4	-	-28.44
ESL-MW-A-F(0.2)-0215	2/2/2015	-	-	-	-	-	-	>3.30	-	10	-	0.35	-	-	-	-	4.8	-
ESL-MW-C1-0215	2/2/2015	350	31	110 D	0.10	<1.1	<1.0	-	11	-	0.42	-	3.1	< 0.050	790 D	4.2	-	-51.59
ESL-MW-C1-F(0.2)-0215	2/2/2015	-	-	-	-	-	-	>3.30	-	11	-	0.41	-	-	-	-	4.0	-
ESL-MW-D1-0215	2/2/2015	330	32	120 D	0.08	<1.1	<1.0	-	13	-	0.39	-	75	< 0.050	540 D	3.0	-	-31.81
ESL-MW-D1-F(0.2)-0215	2/2/2015	-	-	-	-	-	-	>3.30	-	13	-	0.39	-	-	-	-	3.4	-
GWE-1D-0215	2/4/2015	420	31	72 D	8.52	<1.1	<1.0	-	18	-	0.64	-	3.5	< 0.050	290 D	5.3	-	-2.72
GWE-1D-F(0.2)-0215	2/4/2015	-	-	-	-	-	-	>3.30	-	13	-	0.62	-	-	-	-	5.4	-
GWE-2D-0215	2/4/2015	330	29	610 D	0.31	<1.1	<1.0	-	17	-	0.43	-	19	< 0.050	580 D	3.5	-	-44.61
GWE-2D-F(0.2)-0215	2/4/2015	-	-	-	-	-	-	>3.30	-	17	-	0.42	-	-	-	-	6.8	-
GWE-3D-0215	2/3/2015	360	32	850 D	1.40	<1.1	<1.0	-	23	-	0.73	-	50	< 0.050	300 D	4.9	-	-55.63
GWE-3D-F(0.2)-0215	2/3/2015	-	-	-	-	-	-	>3.30	-	23	-	0.73	-	-	-	-	4.8	-
GWE-5S-0215	2/3/2015	410	34	29 D	0.28	<1.1	<1.0	-	0.44	-	0.21	-	14	0.87	110 D	2.7	-	-2.73
GWE-5S-F(0.2)-0215	2/3/2015	-	-	-	-	-	-	0.00	-	< 0.050	-	0.14	-	-	-	-	2.9	-
GWE-5M-0215	2/3/2015	430	33	57 D	0.16	<1.1	<1.0	-	24	-	1.2	-	46	< 0.050	110 D	2.1	-	-80.82
GWE-5M-F(0.2)-0215	2/3/2015	-	-	-	-	-	-	>3.30	-	22	-	1.2	-	-	-	-	2.5	-
GWE-5D-0215	2/3/2015	330	20	88 D	0.13	<1.1	<1.0	-	13	-	0.41	-	52	<0.050	420 D	3.0	-	-40.08
GWE-5D-F(0.2)-0215	2/3/2015	-	-	-	-	-	-	>3.30	-	13	-	0.39	-	-	-	-	2.9	-
PM1M-0215	2/2/2015	470	87	410 D	0.16	<1.1	<1.0	-	2.7	-	2.2	-	15	<0.050	150 D	4.7	-	-39.21
PM1M-6215	2/2/2015	-	-	-	-	-		2.02	-	2.4	-	2.1	-	-	-		3.0	-55.21
PM1D-0215	2/2/2015	330	33	81 D	0.36	<1.1	<1.0	2.02	15		0.52		29	<0.050	320 D	2.0	3.0	-45.80
PM1D-F(0.2)-0215	2/2/2015	-	-	-	-	- 1.1		>3.30	-	15	-	0.50	-		-	-	2.1	-43.80
. ()	_,_,_,			1	1	1					1		1	1	1	1		


Notes
Dissolved Oxygen (DO) and Oxidation Reduction Potential (ORP) values represent the final field measurements prior to sampling (In-Situ - SmartTroll**)
Ferrous Iron was field measured using a 0.2 µm field filtered sample (Hach DR-890 Colorimeter)
F(0.2) - sample was field filtered using a 0.2 µm filter during sample collection

μg/L - micrograms per liter

mg/L - milligrams per liter mV - millivolts

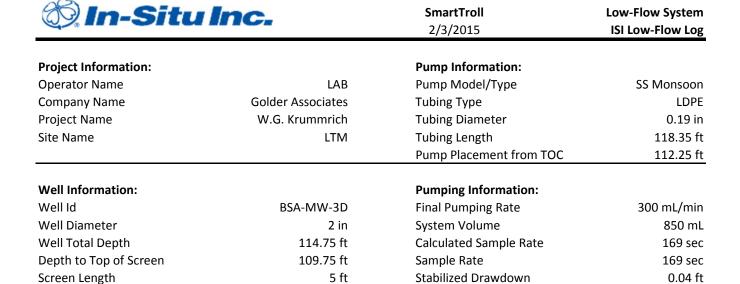
- <- result is non-detect, less than the reporting limit
 "-" not analyzed
- D compound analyzed at a dilution

Prepared By: EPW 3/23/2015 Checked By: LAB 4/7/2015 Reviewed By: AWD 4/10/2015 APPENDIX A GROUNDWATER PURGING AND SAMPLING FORMS

Low-Flow Sampling Stabilization Summary

	Time	Temp [C]	рН [рН]	Cond [µS/cm]	Turb [NTU]	RDO [mg/L]	ORP [mV]
Stabilization Settings			+/-0.2	+/-0.1	+/-1	+/-0.2	+/-20
Stabilization Settings				+/-3%	+/-10%	+/-10%	
	9:28:25	16.20	8.26	2187.27	3.64	0.14	-17.01
	9:29:37	16.24	8.14	2172.78	3.27	0.12	-32.34
Last 5 Readings	9:30:49	16.13	8.06	2184.14	3.53	0.12	-45.88
	9:32:01	16.16	8.01	2177.13	3.47	0.11	-55.11
	9:33:13	16.15	7.96	2170.88	3.27	0.11	-62.87
		-0.11	-0.08	11.36	0.26	0.00	-13.54
Variance in Last 3 Readings		0.03	-0.05	-7.01	-0.06	-0.01	-9.23
		-0.01	-0.05	-6.25	-0.20	0.00	-7.76

Notes:

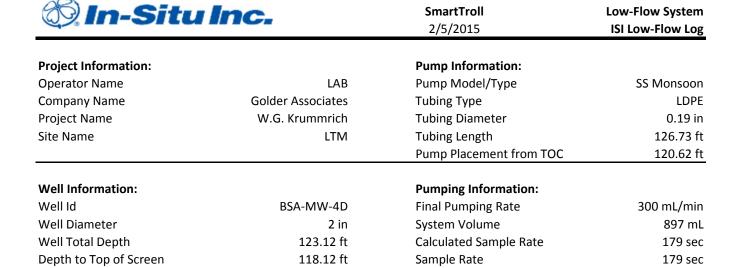

SmartTrollLow-Flow System2/5/2015ISI Low-Flow Log

Project Information:		Pump Information:	
•	145	<u>-</u>	CC 14
Operator Name	LAB	Pump Model/Type	SS Monsoon
Company Name	Golder Associates	Tubing Type	LDPE
Project Name	W.G. Krummrich	Tubing Diameter	0.19 in
Site Name	LTM	Tubing Length	80.55 ft
		Pump Placement from TOC	74.50 ft
Well Information:		Pumping Information:	
Well Id	BSA-MW-2D	Final Pumping Rate	300 mL/min
Well Diameter	2 in	System Volume	639 mL
Well Total Depth	77.00 ft	Calculated Sample Rate	127 sec
Depth to Top of Screen	72.00 ft	Sample Rate	127 sec
Screen Length	5 ft	Stabilized Drawdown	0.00 ft
Depth to Water	24.18 ft		

Low-Flow Sampling Stabilization Summary

	Time	Temp [C]	рН [рН]	Cond [µS/cm]	Turb [NTU]	RDO [mg/L]	ORP [mV]
Stabilization Settings			+/-0.2	+/-0.1	+/-1	+/-0.2	+/-20
				+/-3%	+/-10%	+/-10%	
	13:15:48	14.53	7.66	1630.39	2.98	0.30	-2.41
	13:17:55	14.62	7.56	1610.77	3.79	0.17	-7.35
Last 5 Readings	13:20:02	14.70	7.50	1625.92	2.32	0.11	-16.14
	13:22:09	14.54	7.47	1630.05	1.60	0.10	-23.32
	13:24:16	14.89	7.44	1638.48	1.63	0.10	-29.81
		0.08	-0.06	15.15	-1.47	-0.06	-8.79
Variance in Last 3 Readings		-0.16	-0.03	4.13	-0.72	-0.01	-7.18
		0.35	-0.03	8.43	0.03	0.00	-6.49

Notes:



27.08

Low-Flow Sampling Stabilization Summary

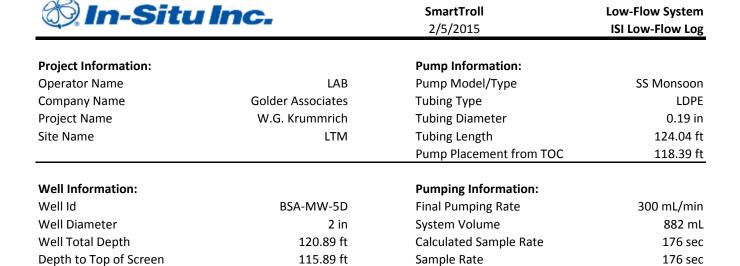
	Time	Temp [C]	рН [рН]	Cond [µS/cm]	Turb [NTU]	RDO [mg/L]	ORP [mV]
Stabilization Settings			+/-0.2	+/-0.1	+/-1	+/-0.2	+/-20
				+/-3%	+/-10%	+/-10%	
	15:03:42	15.71	7.03	1469.80	4.35	0.24	-16.83
	15:06:31	16.01	6.99	1459.64	2.01	0.17	-34.95
Last 5 Readings	15:09:20	16.14	6.97	1456.28	2.38	0.13	-44.17
	15:12:09	16.28	6.96	1452.03	2.31	0.12	-51.35
	15:14:58	16.30	6.96	1451.86	1.87	0.11	-57.19
		0.13	-0.02	-3.36	0.37	-0.04	-9.22
Variance in Last 3 Readings		0.14	-0.01	-4.25	-0.07	-0.01	-7.18
		0.02	0.00	-0.17	-0.44	-0.01	-5.84

Notes:

Stabilized Drawdown

0.00 ft

5 ft


37.51 ft

Low-Flow Sampling Stabilization Summary

	Time	Temp [C]	рН [рН]	Cond [µS/cm]	Turb [NTU]	RDO [mg/L]	ORP [mV]
Stabilization Settings			+/-0.2	+/-0.1	+/-1	+/-0.2	+/-20
				+/-3%	+/-10%	+/-10%	
	11:31:13	13.80	7.84	1500.32	6.08	0.30	8.49
	11:34:12	13.67	7.65	1483.59	3.53	0.27	-3.31
Last 5 Readings	11:37:11	13.58	7.56	1488.87	2.44	0.25	-10.03
	11:40:10	13.90	7.50	1485.32	2.09	0.23	-16.45
	11:43:09	13.90	7.46	1493.07	1.89	0.20	-21.47
		-0.09	-0.09	5.28	-1.09	-0.02	-6.72
Variance in Last 3 Readings		0.32	-0.06	-3.55	-0.35	-0.02	-6.42
		0.00	-0.04	7.75	-0.20	-0.03	-5.02

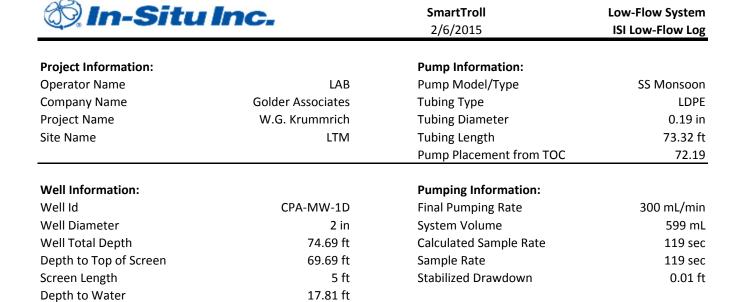
Notes:

Screen Length

Stabilized Drawdown

0.05 ft

5 ft


33.33 ft

Low-Flow Sampling Stabilization Summary

	Time	Temp [C]	рН [рН]	Cond [µS/cm]	Turb [NTU]	RDO [mg/L]	ORP [mV]
Stabilization Settings			+/-0.2	+/-0.1	+/-1	+/-0.2	+/-20
				+/-3%	+/-10%	+/-10%	
	10:12:20	15.69	7.44	1898.47	5.13	0.31	-19.08
	10:15:16	15.67	7.39	1901.68	3.99	0.23	-37.78
Last 5 Readings	10:18:12	15.57	7.36	1904.15	3.09	0.20	-49.02
	10:21:08	15.88	7.35	1901.92	2.35	0.08	-57.91
	10:24:04	15.80	7.35	1915.85	1.69	0.12	-64.42
		-0.10	-0.03	2.47	-0.90	-0.03	-11.24
Variance in Last 3 Readings		0.31	-0.01	-2.23	-0.74	-0.12	-8.89
		-0.08	0.00	13.93	-0.66	0.04	-6.51

Notes:

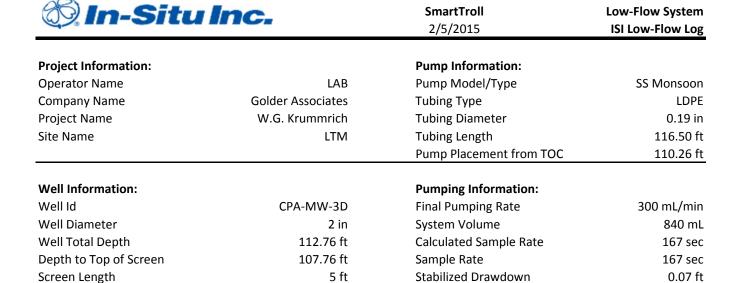
Screen Length

Low-Flow Sampling Stabilization Summary

	Time	Temp [C]	рН [рН]	Cond [µS/cm]	Turb [NTU]	RDO [mg/L]	ORP [mV]
Stabilization Settings			+/-0.2	+/-0.1	+/-1	+/-0.2	+/-20
				+/-3%	+/-10%	+/-10%	
	8:39:02	16.15	8.92	1691.28	6.27	0.21	70.13
	8:41:01	16.28	8.93	1735.15	5.51	0.16	56.80
Last 5 Readings	8:43:00	16.24	8.90	1761.91	2.40	0.13	49.57
	8:44:59	16.23	8.87	1775.89	1.99	0.12	42.37
	8:46:59	16.24	8.86	1785.14	1.90	0.11	38.50
		-0.04	-0.03	26.76	-3.11	-0.03	-7.23
Variance in Last 3 Readings		-0.01	-0.03	13.98	-0.41	-0.01	-7.20
		0.01	-0.01	9.25	-0.09	-0.01	-3.87

Notes:

SmartTrollLow-Flow System2/5/2015ISI Low-Flow Log

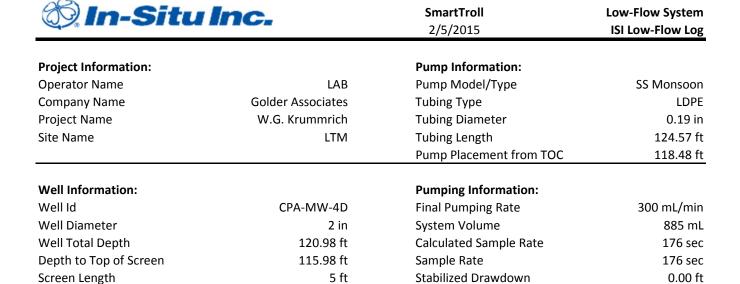

		_, -,	
Project Information:		Pump Information:	
Operator Name	LAB	Pump Model/Type	SS Monsoon
Company Name	Golder Associates	Tubing Type	LDPE
Project Name	W.G. Krummrich	Tubing Diameter	0.19 in
Site Name	LTM	Tubing Length	108.15 ft
		Pump Placement from TOC	102.06 ft
Well Information:		Pumping Information:	
Well Id	CPA-MW-2D	Final Pumping Rate	300 mL/min
Well Diameter	2 in	System Volume	793 mL
Well Total Depth	104.56 ft	Calculated Sample Rate	158 sec
Depth to Top of Screen	99.56 ft	Sample Rate	158 sec
Screen Length	5 ft	Stabilized Drawdown	0.00 ft
Depth to Water	15.88 ft		

Low-Flow Sampling Stabilization Summary

	Time	Temp [C]	рН [рН]	Cond [µS/cm]	Turb [NTU]	RDO [mg/L]	ORP [mV]
Stabilization Settings			+/-0.2	+/-0.1	+/-1	+/-0.2	+/-20
				+/-3%	+/-10%	+/-10%	
	14:02:33	16.80	7.79	1061.44	25.70	0.46	8.03
	14:05:11	16.96	7.53	1078.42	12.40	0.39	-12.90
Last 5 Readings	14:07:49	16.78	7.43	1112.41	7.08	0.35	-22.75
	14:10:27	16.65	7.39	1123.78	6.69	0.33	-31.97
	14:13:05	16.60	7.37	1139.63	5.82	0.30	-38.60
		-0.18	-0.10	33.99	-5.32	-0.04	-9.85
Variance in Last 3 Readings		-0.13	-0.04	11.37	-0.39	-0.02	-9.22
		-0.05	-0.02	15.85	-0.87	-0.03	-6.63

Notes:

Conductivity slow to stabalize.

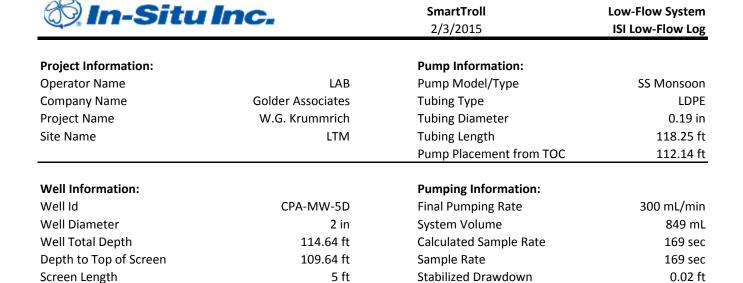


19.10 ft

Low-Flow Sampling Stabilization Summary

	Time	Temp [C]	рН [рН]	Cond [µS/cm]	Turb [NTU]	RDO [mg/L]	ORP [mV]
Stabilization Settings			+/-0.2	+/-0.1	+/-1	+/-0.2	+/-20
				+/-3%	+/-10%	+/-10%	
	12:31:50	16.82	7.48	2196.68	8.84	0.17	7.60
	12:34:37	16.67	7.36	2119.95	18.10	0.11	-16.36
Last 5 Readings	12:37:24	16.69	7.31	2083.75	5.36	0.09	-31.41
	12:40:11	16.64	7.28	2089.40	4.00	80.0	-41.11
	12:42:59	16.55	7.26	2092.51	3.57	0.07	-47.86
		0.02	-0.05	-36.20	-12.74	-0.02	-15.05
Variance in Last 3 Readings		-0.05	-0.03	5.65	-1.36	-0.01	-9.70
		-0.09	-0.02	3.11	-0.43	-0.01	-6.75

Notes:

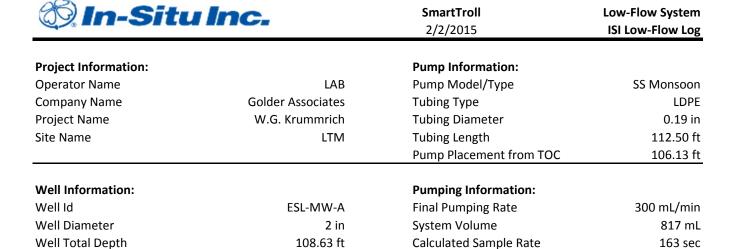


33.22 ft

Low-Flow Sampling Stabilization Summary

	Time	Temp [C]	рН [рН]	Cond [µS/cm]	Turb [NTU]	RDO [mg/L]	ORP [mV]
Stabilization Settings			+/-0.2	+/-0.1	+/-1	+/-0.2	+/-20
				+/-3%	+/-10%	+/-10%	
	9:20:48	14.95	7.30	1882.87	5.30	0.24	2.24
	9:23:44	14.39	7.31	1861.59	3.62	0.11	-24.87
Last 5 Readings	9:26:40	14.26	7.31	1884.51	1.67	0.13	-41.05
	9:29:36	13.94	7.32	1882.85	1.69	0.13	-52.61
	9:32:32	13.94	7.33	1883.73	1.35	0.11	-60.99
		-0.13	0.00	22.92	-1.95	0.02	-16.18
Variance in Last 3 Readings		-0.32	0.01	-1.66	0.02	0.00	-11.56
		0.00	0.01	0.88	-0.34	-0.02	-8.38

Notes:



28.67 ft

Low-Flow Sampling Stabilization Summary

	Time	Temp [C]	pH [pH]	Cond [µS/cm]	Turb [NTU]	RDO [mg/L]	ORP [mV]
Stabilization Settings			+/-0.2	+/-0.1	+/-1	+/-0.2	+/-20
Stabilization Settings				+/-3%	+/-10%	+/-10%	
	14:00:54	14.53	7.00	1922.21	1.72	0.37	8.95
	14:06:32	14.86	6.79	1937.23	1.07	0.24	-16.49
Last 5 Readings	14:09:21	14.80	6.77	1940.38	0.67	0.22	-24.09
	14:14:59	14.76	6.74	1938.64	0.60	0.19	-34.44
	14:17:48	14.66	6.74	1937.83	0.48	0.18	-37.49
		-0.06	-0.02	3.15	-0.40	-0.02	-7.60
Variance in Last 3 Readings		-0.04	-0.03	-1.74	-0.07	-0.03	-10.35
		-0.10	0.00	-0.81	-0.12	-0.01	-3.05

Notes:

Sample Rate

Stabilized Drawdown

163 sec

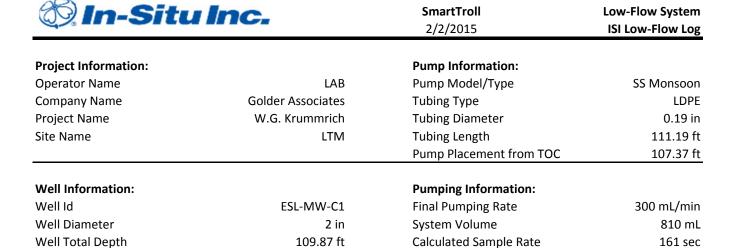
0.01 ft

103.63 ft

23.48 ft

5 ft

Low-Flow Sampling Stabilization Summary


Depth to Top of Screen

Screen Length

Depth to Water

	Time	Temp [C]	рН [рН]	Cond [µS/cm]	Turb [NTU]	RDO [mg/L]	ORP [mV]
Stabilization Settings			+/-0.2	+/-0.1	+/-1	+/-0.2	+/-20
Stabilization Settings				+/-3%	+/-10%	+/-10%	
	11:07:30	14.21	7.08	1790.92	39.30	0.32	-24.64
	11:10:13	14.30	7.08	1766.79	30.50	0.36	-26.48
Last 5 Readings	11:12:56	14.30	7.07	1763.11	20.20	0.41	-28.23
	11:15:39	14.46	7.07	1749.78	15.90	0.43	-28.48
	11:18:22	14.27	7.07	1749.41	11.80	0.49	-28.44
		0.00	-0.01	-3.68	-10.30	0.05	-1.75
Variance in Last 3 Readings		0.16	0.00	-13.33	-4.30	0.02	-0.25
		-0.19	0.00	-0.37	-4.10	0.06	0.04

Notes:

Sample Rate

Stabilized Drawdown

161 sec

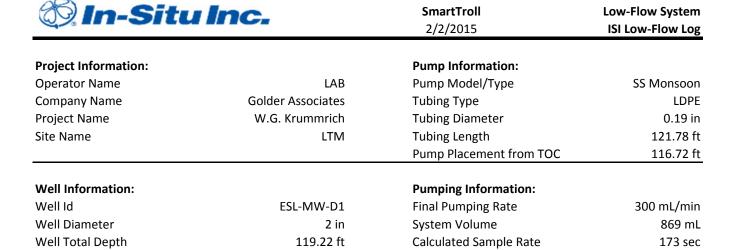
0 ft

104.87 ft

19.41 ft

5 ft

Low-Flow Sampling Stabilization Summary


Depth to Top of Screen

Screen Length

Depth to Water

	Time	Temp [C]	рН [рН]	Cond [µS/cm]	Turb [NTU]	RDO [mg/L]	ORP [mV]
Stabilization Settings			+/-0.2	+/-0.1	+/-1	+/-0.2	+/-20
				+/-3%	+/-10%	+/-10%	
Last 5 Readings	12:01:51	14.26	7.41	2221.62	37.00	0.19	-56.57
	12:04:32	14.23	7.29	2246.55	18.90	0.16	-53.38
	12:07:13	14.53	7.22	2239.21	19.00	0.14	-51.61
	12:09:54	14.76	7.18	2236.78	12.50	0.11	-51.01
	12:12:35	14.87	7.14	2251.77	8.28	0.10	-51.59
Variance in Last 3 Readings		0.30	-0.07	-7.34	0.10	-0.02	1.77
		0.23	-0.04	-2.43	-6.50	-0.03	0.60
		0.11	-0.04	14.99	-4.22	-0.01	-0.58

Notes:

Sample Rate

Stabilized Drawdown

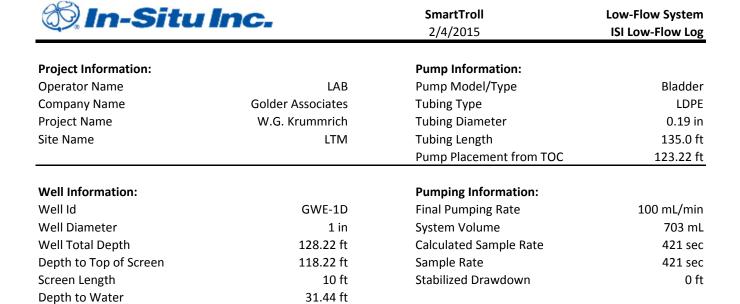
173 sec

0.04 ft

114.22 ft

27.61 ft

5 ft


Low-Flow Sampling Stabilization Summary

Depth to Top of Screen

Screen Length

Depth to Water

	Time	Temp [C]	рН [рН]	Cond [μS/cm]	Turb [NTU]	RDO [mg/L]	ORP [mV]
Stabilization Settings			+/-0.2	+/-0.1	+/-1	+/-0.2	+/-20
				+/-3%	+/-10%	+/-10%	
	10:12:32	14.40	6.96	1963.12	1.40	0.11	-6.69
	10:15:25	14.23	6.98	1980.93	1.93	0.11	-16.12
Last 5 Readings	10:18:18	14.03	7.00	1986.69	1.58	0.10	-22.46
	10:21:11	14.10	7.01	1983.04	0.87	0.09	-27.67
	10:24:04	14.23	7.02	1983.61	1.74	0.08	-31.81
		-0.20	0.02	5.76	-0.35	-0.01	-6.34
Variance in Last 3 Readings		0.07	0.01	-3.65	-0.71	-0.01	-5.21
		0.13	0.01	0.57	0.87	-0.01	-4.14

Low-Flow Sampling Stabilization Summary

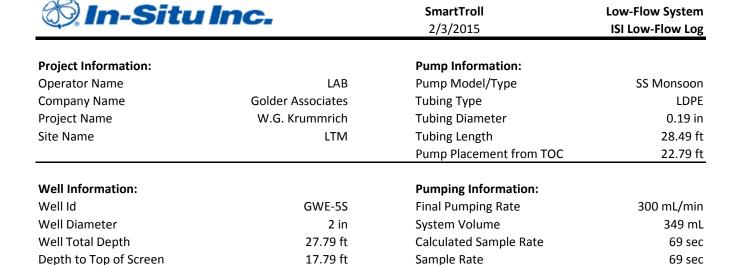
	Time	Temp [C]	рН [рН]	Cond [μS/cm]	Turb [NTU]	RDO [mg/L]	ORP [mV]
Stabilization Settings			+/-0.2	+/-0.1	+/-1	+/-0.2	+/-20
				+/-3%	+/-10%	+/-10%	
	12:58:02	8.56	7.35	1585.79	52.00	7.76	-6.21
	13:05:03	8.26	7.36	1598.08	52.90	8.23	-5.55
Last 5 Readings	13:12:06	7.89	7.36	1591.95	51.70	8.39	-4.31
	13:19:11	7.62	7.37	1601.12	56.40	8.45	-3.46
	13:26:12	7.18	7.37	1604.42	47.20	8.52	-2.72
Variance in Last 3 Readings		-0.37	0.00	-6.13	-1.2	0.16	1.24
		-0.27	0.01	9.17	4.70	0.06	0.85
		-0.44	0.00	3.30	-9.20	0.07	0.74

(1) In-Situ	Inc.	SmartTroll 2/4/2015	Low-Flow System ISI Low-Flow Log	
Project Information:		Pump Information:		
Operator Name	LAB	Pump Model/Type	Bladder	
Company Name	Golder Associates	Tubing Type	LDPE	
Project Name	W.G. Krummrich	Tubing Diameter	0.19 in	
Site Name	LTM	Tubing Length	135.0 ft	
		Pump Placement from TOC	131.59	
Well Information:		Pumping Information:		
Well Id	GWE-2D	Final Pumping Rate	100 mL/min	
Well Diameter	1 in	System Volume	743 mL	
Well Total Depth	136.59 ft	Calculated Sample Rate	445 sec	
Depth to Top of Screen	126.59 ft	Sample Rate	445 sec	
Screen Length	10 ft	Stabilized Drawdown	0 ft	
Depth to Water	31.40 ft			

Low-Flow Sampling Stabilization Summary

	Time	Temp [C]	pH [pH]	Cond [µS/cm]	Turb [NTU]	RDO [mg/L]	ORP [mV]
Stabilization Settings			+/-0.2	+/-0.1	+/-1	+/-0.2	+/-20
				+/-3%	+/-10%	+/-10%	
	10:09:56	14.06	7.15	3056.04	17.00	0.83	-24.01
	10:17:21	13.97	7.15	3125.49	9.67	0.51	-29.49
Last 5 Readings	10:39:24	13.99	7.15	3208.09	4.86	0.33	-41.66
	10:46:25	13.52	7.16	3229.64	1.76	0.31	-42.70
	10:53:26	13.76	7.16	3243.09	1.23	0.31	-44.61
		0.02	0.00	82.60	-4.81	-0.18	-12.17
Variance in Last 3 Readings		-0.47	0.01	21.55	-3.10	-0.02	-1.04
		0.24	0.00	13.45	-0.53	0.00	-1.91

Notes:



SmartTrollLow-Flow System2/3/2015ISI Low-Flow Log

		, ,	
Project Information:		Pump Information:	
<u>-</u>		-	
Operator Name	LAB	Pump Model/Type	Peristaltic
Company Name	Golder Associates	Tubing Type	LDPE
Project Name	W.G. Krummrich	Tubing Diameter	0.19 in
Site Name	LTM	Tubing Length	116.0 ft
		Pump Placement from TOC	109.88 ft
Well Information:		Pumping Information:	
Well Id	GWE-3D	Final Pumping Rate	250 mL/min
Well Diameter	1 in	System Volume	747 mL
Well Total Depth	114.88 ft	Calculated Sample Rate	179 sec
Depth to Top of Screen	104.88 ft	Sample Rate	179 sec
Screen Length	10 ft	Stabilized Drawdown	0 ft
Depth to Water	29.39 ft		

Low-Flow Sampling Stabilization Summary

	Time	Temp [C]	рН [рН]	Cond [µS/cm]	Turb [NTU]	RDO [mg/L]	ORP [mV]
Stabilization Settings			+/-0.2	+/-0.1	+/-1	+/-0.2	+/-20
				+/-3%	+/-10%	+/-10%	
	12:08:11	12.05	6.88	3174.77	0.68	1.51	-54.08
	12:11:10	12.04	6.85	3450.66	0.72	1.44	-53.88
Last 5 Readings	12:14:09	12.48	6.85	3543.24	0.56	1.48	-55.02
	12:17:08	12.30	6.86	3597.12	0.47	1.44	-55.09
	12:20:07	12.30	6.86	3600.58	0.40	1.40	-55.63
Variance in Last 3 Readings		0.44	0.00	92.58	-0.16	0.04	-1.14
		-0.18	0.01	53.88	-0.09	-0.04	-0.07
		0.00	0.00	3.46	-0.07	-0.04	-0.54

Stabilized Drawdown

0.03 ft

10 ft

18.95 ft

Low-Flow Sampling Stabilization Summary

	Time	Temp [C]	рН [рН]	Cond [µS/cm]	Turb [NTU]	RDO [mg/L]	ORP [mV]
Stabilization Settings			+/-0.2	+/-0.1	+/-1	+/-0.2	+/-20
				+/-3%	+/-10%	+/-10%	
	10:46:31	15.56	6.76	1113.58	15.70	0.32	-6.73
	10:47:40	15.61	6.75	1118.28	15.90	0.32	-5.66
Last 5 Readings	10:48:50	15.77	6.75	1110.36	14.90	0.31	-4.54
	10:49:59	15.83	6.74	1116.10	13.00	0.30	-3.64
	10:51:08	15.89	6.74	1109.19	11.10	0.28	-2.73
Variance in Last 3 Readings		0.16	0.00	-7.92	-1.00	-0.01	1.12
		0.06	-0.01	5.74	-1.90	-0.01	0.90
		0.06	0.00	-6.91	-1.90	-0.02	0.91

Notes:

Screen Length

Depth to Water

Golder Associates

W.G. Krummrich

LTM

GWE-5M

58.03 ft

48.03 ft

19.22 ft

10 ft

2 in

Company Name

Well Information:

Well Diameter

Screen Length

Depth to Water

Well Total Depth

Depth to Top of Screen

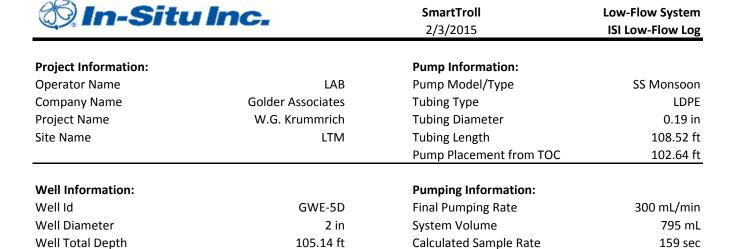
Project Name

Site Name

Well Id

SmartTroll 2/3/2015	Low-Flow System ISI Low-Flow Log
Pump Information: Pump Model/Type Tubing Type Tubing Diameter Tubing Length	SS Monsoon LDPE 0.19 in 58.71 ft
Pump Placement from TOC	53.03 ft
Pumping Information: Final Pumping Rate System Volume Calculated Sample Rate	300 mL/min 517 mL 103 sec

103 sec


0.00 ft

Low-Flow Sampling Stabilization Summary

	Time	Temp [C]	рН [рН]	Cond [µS/cm]	Turb [NTU]	RDO [mg/L]	ORP [mV]
Stabilization Settings			+/-0.2	+/-0.1	+/-1	+/-0.2	+/-20
				+/-3%	+/-10%	+/-10%	
	10:13:45	14.98	6.91	1272.56	114.00	0.56	-65.88
	10:15:28	15.04	6.91	1272.20	115.00	0.58	-71.33
Last 5 Readings	10:17:11	15.04	6.91	1266.63	102.00	0.10	-74.93
	10:18:54	15.12	6.91	1279.69	90.50	0.16	-78.31
	10:20:37	15.16	6.92	1269.55	84.50	0.16	-80.82
		0.00	0.00	-5.57	-13.00	-0.48	-3.60
Variance in Last 3 Readings		0.08	0.00	13.06	-11.50	0.06	-3.38
		0.04	0.01	-10.14	-6.00	0.00	-2.51

Sample Rate

Stabilized Drawdown

Sample Rate

Stabilized Drawdown

159 sec

0.00 ft

100.14 ft

19.60 ft

5 ft

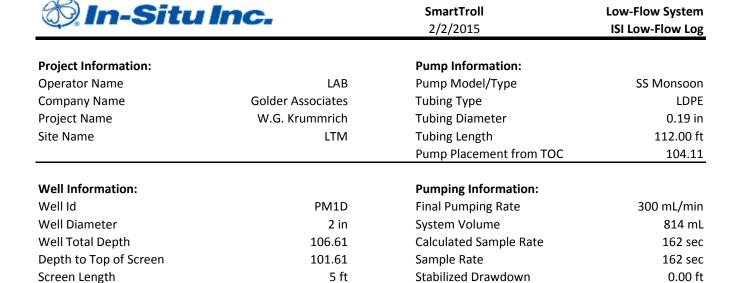
Low-Flow Sampling Stabilization Summary

Depth to Top of Screen

Screen Length

Depth to Water

	Time	Temp [C]	рН [рН]	Cond [µS/cm]	Turb [NTU]	RDO [mg/L]	ORP [mV]
Stabilization Settings			+/-0.2	+/-0.1	+/-1	+/-0.2	+/-20
				+/-3%	+/-10%	+/-10%	
	9:34:07	13.35	6.71	1705.34	165.00	0.23	-5.42
	9:36:46	13.55	6.72	1697.61	67.40	0.20	-14.21
Last 5 Readings	9:39:25	13.83	6.75	1704.85	36.50	0.17	-24.77
	9:42:04	13.96	6.77	1698.64	20.60	0.14	-33.00
	9:44:43	14.03	6.80	1705.22	17.00	0.13	-40.08
		0.28	0.03	7.24	-30.90	-0.03	-10.56
Variance in Last 3 Readings		0.13	0.02	-6.21	-15.90	-0.03	-8.23
		0.07	0.03	6.58	-3.60	-0.01	-7.08



SmartTrollLow-Flow System2/2/2015ISI Low-Flow Log

Project Information:		Pump Information:	
Operator Name	LAB	Pump Model/Type	SS Monsoon
Company Name	Golder Associates	Tubing Type	LDPE
Project Name	W.G. Krummrich	Tubing Diameter	0.19 in
Site Name	LTM	Tubing Length	67.00 ft
Site Name	LIIVI	Pump Placement from TOC	55.59 ft
		, , , , , , , , , , , , , , , , , , ,	
Well Information:		Pumping Information:	
Well Id	PM1M	Final Pumping Rate	300 mL/min
Well Diameter	2 in	System Volume	564 mL
Well Total Depth	60.59 ft	Calculated Sample Rate	112 sec
Depth to Top of Screen	50.59 ft	Sample Rate	112 sec
Screen Length	10 ft	Stabilized Drawdown	0.02 ft
Depth to Water	25.06 ft		

Low-Flow Sampling Stabilization Summary

	Time	Temp [C]	рН [рН]	Cond [µS/cm]	Turb [NTU]	RDO [mg/L]	ORP [mV]
Stabilization Settings			+/-0.2	+/-0.1	+/-1	+/-0.2	+/-20
				+/-3%	+/-10%	+/-10%	
	9:07:58	13.30	6.86	2451.15	38.20	0.30	-35.30
	9:09:50	13.58	6.86	2451.37	30.50	0.35	-36.48
Last 5 Readings	9:11:42	13.80	6.85	2427.55	21.90	0.25	-37.39
	9:13:34	13.94	6.86	2397.53	15.80	0.22	-38.22
	9:15:26	14.03	6.85	2415.22	14.00	0.16	-39.21
		0.22	-0.01	-23.82	-8.60	-0.10	-0.91
Variance in Last 3 Readings		0.14	0.01	-30.02	-6.10	-0.03	-0.83
		0.09	-0.01	17.69	-1.80	-0.06	-0.99

25.05

Low-Flow Sampling Stabilization Summary

	Time	Temp [C]	рН [рН]	Cond [µS/cm]	Turb [NTU]	RDO [mg/L]	ORP [mV]
Stabilization Settings			+/-0.2	+/-0.1	+/-1	+/-0.2	+/-20
Stabilization Settings				+/-3%	+/-10%	+/-10%	
	8:18:01	12.51	7.08	1532.57	13.20	0.59	-37.84
	8:20:43	12.76	7.07	1545.42	8.59	0.43	-39.89
Last 5 Readings	8:23:25	12.98	7.07	1547.12	6.75	0.49	-42.89
	8:26:07	12.93	7.07	1543.02	5.30	0.46	-43.76
	8:28:49	12.97	7.07	1529.09	4.98	0.36	-45.80
		0.22	0.00	1.70	-1.84	0.06	-3.00
Variance in Last 3 Readings		-0.05	0.00	-4.10	-1.45	-0.03	-0.87
		0.04	0.00	-13.93	-0.32	-0.10	-2.04

Notes:

Depth to Water

APPENDIX B CHAINS-OF-CUSTODY

Chain of Custody Record

5102 LaRoche Avenue

Savannah GA 31404

THE LEADER IN ENVIRONMENTAL TESTING

phone 912.354.7858 fax	Regu	ulatory Pro	gram:	DW	NPD	DES [✓ R	RCRA		Othe	r:										TestAmerica Laboratories, Inc.
Client Contact	7	Vlanager: Ar			·					i Bind	ner		I	Date	: 1	2/2	-/1	5			COC No:
Golder Associates Inc.	Tel/Fax:	636-724-91	91			Lab	Con	tact:	Mic	hele ł	<erse< td=""><td>∋у</td><td></td><td>Carri</td><td></td><td>户</td><td></td><td></td><td></td><td></td><td>of 2 COCs</td></erse<>	∋у		Carri		户					of 2 COCs
820 South Main Street		Analysis T								4	:										Sampler:
St. Charles, MO 63301		LENDAR DAYS	-	ORKING D	DAYS	$\ \ _{-}$				by 375.4	2 2						İ				For Lab Use Only:
(636) 724-9191 Phone		TAT if different	from Below §	Standard		Z	:			<u>ا</u>	3 3			ွှ						-	Walk-in Client:
(636) 724-9323 FAX	回		2 weeks			Z			ا ن	/Sulfate	RSK 175			6010C		ĺ					Lab Sampling:
Project Name: 1Q15 LTM GW Sampling-1403345			1 week			۾اڪ			6010C		হ্ৰ 🖟	.		र्व						ı	
Site: Solutia WG Krummrich Facility P O # 42447936			2 days			윤	2	0	ý 6	375.2	ses	3.2		튈.	_	1					Job / SDG No.:
P 0 # 42447936		1	1 day Sample		-	ag g	y 82	8260	N k	5 5	Ga	353.	15.1	Fe F	<u>.</u>						
Sample Identification	Sample Date	Sample Time	Type (C=Comp, G=Grab)	Matrix	# of Cont.	Filtered Sample (Y Perform MS / MSD	SVOCs by 8270	VOCs by	Total Fe/Mn by	Alk/CO2 by 310.1 Chloride by 325.2	Dissolved Gases	Nitrate by	TOC by 415.1	Dissolved Fe/Mn	DOC by 415.						Sample Specific Notes:
PMID-0215_	2/2/15	50930	G	W	14			3	ì	3 1		2	3								
PMID-F(0.2)0215	1	i	ĵ	1	84	Y								ì	3						
PMID-0215-AD		1			3			3													
PMIM-0215	No.	ic 18			j H			3	_venetana		3	2	3								
PMIM - F(0,2)-0215		<u> </u>			र्भ	Y								, man	3						
ESL-MW-DI-0215		1126			14			3	Î	1 1	3	2	<u>-3</u>								
ESL-MW-DI-F(0,2)-0215		1			4	Y								1 3	3						
ESU-MW-C1-0215		1315			14	Ш		3	ě	1 1	3	2	3								
ESL-MW-C1-F(0.2)-0215		1			4	Ш								1 3	3				111		
ESL-MW-C1 - OZIS-EB		1330			3	Ш		3													
ESL-MW-A-0215		1220			14			3	1	11	3	2	کَد						.		
ESL-MW-A-F(0,2)-0215		ا ــــــــــــــــــــــــــــــــــــ			4	Ý								- 4	3				68	30-109	9553 Chain of Custody
Preservation Used: 1= Ice, 2= HCl; 3= H2SO4; 4=HNO3; 5=	NaOH; 6=	Other			1.5	V AUD YOUR STEELS	or producers to			1 1	Sel September Value	K 04/2-2000			3		377				
Possible Hazard Identification: Are any samples from a listed EPA Hazardous Waste? Please L Comments Section if the lab is to dispose of the sample.	ist any EP	A Waste Co	des for the	sample	in the		ampi	le Di	ispo:	sai (A	tee	may	be a	sses	ssed	ıt sa	mple	es ar	re re	ained	l longer than 1 month)
✓ Non-Hazard ☐ Flammable . ☐ Skin Irritant	Po	ison B	Un	known				Ret	urn to	Client		E	√ C	ispos	al by I	Lab			Arcl	nive for	Months
Special Instructions/QC Requirements & Comments: VOC headspace upon sampling: Yes		(380)-/(995	<u> </u>	5 -	3							(2 :	8,	6	2.8	C	F)05,2.52
Custody Seals Intact: Yes No	Custody 8	Seal No.: 🏟	9311	पान	312	_			Coo	ler Te	mp.	(°C):	Obs'	d:			Corr'	d:			Therm ID No.:
Relinguished by:	Company:		Date/Ti		R	eceiv	ed b	oy:						C	ompa	ıny:				Date/Time:	
Reinquished by:	Company			Date/Ti		R	eceiv	/ed b	oy:						C	ompa	any: Date/Time:			Date/Time:	
Relinquished by:	Company	r.		Date/Ti	me:	R	êçei\	edi		borato		y:			c	Company A J			J		Date/Time: 020515 0928

Chain of Custody Record

5102 LaRoche Avenue

THE LEADER IN ENVIRONMENTAL TESTING

Savannah, GA 31404 phone 912.354.7858 fax	Regu'	latory Pro	gram:	DW	NPC	DES -	√ R	.CRA	П	Other:	:										TestAmerica Laboratories, Inc.
Client Contact			manda Derh			_		_	Lori E	_			Ī	Date:	: 2	1/2	119	5		7	COC No:
Golder Associates Inc.	Tel/Fax: 6	36-724-919	91			4			Miche			y	С	Carri	- 14-	-,	≥d €			1	1 of 2 COCs
820 South Main Street		Analysis T	urnaround	Time		П	T		\Box	4	\Box		\top	T	T	T	ĬΤ	Ť	TT	1	Sampler:
St. Charles, MO 63301	Z CALI	ENDAR DAYS	w	ORKING D	AYS	11				375.4			.							Ī	For Lab Use Only:
(636) 724-9191 Phone	Т	AT if different	from Below S	tandard		z	.		.	<u>\$</u>	175		, ,	ان						1	Walk-in Client:
(636) 724-9323 FAX	7		2 weeks			z >	:			ate	쏤		. 5	6010C							Lab Sampling:
Project Name: 1Q15 LTM GW Sampling-1403345			1 week			٥١٦	1		Total Fe/Mn by 6010C	Alk/CO2 by 310.1 Chloride by 325.2/Sulfate by	by RSK 175		. 9	خ ق							-
Site: Solutia WG Krummrich Facility			2 days			e (0		8 2	5.2/	es t	2	. 1	미							Job / SDG No.:
P O # 42447936			1 day			d w	827	260	Total Fe/Mn by 60	32.	Dissolved Gases	Nitrate by 353.2	5.1	. e	- 0		1	l			
			Sample			S S	à	8	N €	0 b	g	β	4	- ed -	DOC by 415.1						
	Sample	Sample	Type (C=Comp.		# of	i j	ပ္လ	S	<u> </u>	3 8	S	ate	o o	305	၁ ၁		1				
Sample Identification	Date	Time	G=Grab)	Matrix	# of Cont.		SVOCs by 8270	Š	Tot		Dis	Zig.	TOC by 415.1		<u> </u>					Ш	Sample Specific Notes:
ESL-MW-A-0215-MS	2/2/15	1220	Ġ	W	3	\prod		3													Control of the Contro
ESL-MW-A-0215-MSD		ل	1_1_	1	3	\coprod		3													
ESL-MW-A-0215-MSD IQIS LTM Trip Blank #	· Names		7.2000000000000000000000000000000000000	- Distribution	2			2		$\prod_{}$				floor							
											\prod									\Box	
,						П			\top	1			T	T	T	\prod	\sqcap	\top	\prod	\sqcap	
						П	\prod	П		\top	\Box		\top	\top	\top	\prod	\sqcap		\top	ΠŦ	
						П	\prod	П				П	\top	T	\top		一	\top	11	\sqcap	
						忊		\sqcap		1				\dagger	\top		\sqcap	\top	11		
							1	П		T	\prod	\sqcap	T	T	\top			\top	\top	\sqcap	
						忊	1			+	11		\top	1	\top	11		1	11		
						什				\top	$\dagger \dagger$	П	1	\top	T	11		\top	11		
						忊		\sqcap	\top	1		П	\top	T	\top	11		1	$\forall \exists$		
Preservation Used: 1= Ice, 2= HCI; 3= H2SO4; 4=HNO3; 5=	VaOH; 6= 0	Other							4 1								5.9				
Possible Hazard Identification: Are any samples from a listed EPA Hazardous Waste? Please L Comments Section if the lab is to dispose of the sample.	ist any EPA	. Waste Co	des for the	sample i	n the	Sa	ampl	e Di	sposa	al (A	fee r	nay	be as	sses	sed	if san	nples	s are	retain	ned l	onger than 1 month)
✓ Non-Hazard ☐ Flammable ☐ Skin Irritant	Pois	on B	Unl	known		7		Reti	urn to 0	Client		E	✓ Di	ispos	al by L	.ab			Archive	for	Months
Special Instructions/QC Requirements & Comments:																		$\overline{}$	$\overline{}$,	
VOC headspace upon sampling: Yes(No)		66	/ ~ Oc	M.	15	>	,	3						().	\mathscr{C}_{l}	,2	(8	\mathbb{C}	F	0.5, 2.5 %
Custody Seals Intact: Yes No	Custody S	eal No.: 🛏	19311 /	419	312				Coole	er Ter	mp. (°C):	Obs'c	d:			Corr'd	l:		T	Therm ID No.:
Relinquished by: Company:				Date/Tir	me:		eceiv	ed b	y:						Cc	ompar	ny:			I	Date/Time:
Relinquished by:	Company:			Date/Tir		- R	eceiv	ed b							Cc	ompar	ny:			1	Date/Time:
0						\perp									\perp						
Relinquished by:	Company:	<u>:</u>		Date/Tir	me:	Reserved in Laboratory by: Company: A SAU.						6	7	Date/Time: 02-03-15 09-28							

Form No. CA-C-WI-002, Rev. 4.3, dated 12/05/2013

Chain of Custody Record

TestAmerica
THE LEADER IN ENVIRONMENTAL TESTING

5102 LaRoche Avenue

Savannah, GA 31404 phone 912,354,7858 fax	Regu	latory Pro	gram: [] DW [NPE	es [CRA		Other	r:										TestAmerica Laboratori	ies, Inc.
Client Contact	Project N	lanager: Ar	nanda Derl	nake	OF EXPORT	Site	Cont	act:	Lori	Bind	ner		-	Date	: '2	2 (3	5 15	5			COC No:	
Golder Associates Inc.	Tel/Fax:	36-724-919	91			Lab	Cont	act:	Mich	iele H	(erse	y		Carr	ier:	RO	(Ex	E			of 1 COCs	
820 South Main Street		Analysis T	urnaround	Time		П				4	:	Ī	П							T	Sampler:	
St. Charles, MO 63301	☑ CAI	ENDAR DAYS	w	ORKING D	AYS					Alk/CO2 by 310.1 Chloride by 325.2/Sulfate by 375.4	3									ŀ	For Lab Use Only:	
(636) 724-9191 Phone		TAT if different	from Below §	Standard		2				2	RSK 175			Ωl							Walk-in Client:	
(636) 724-9323 FAX			2 weeks			2 >				Fate	溪			6010C		I					Lab Sampling:	
Project Name: 1Q15 LTM GW Sampling-1403345			1 week			> 0			6010C	Trigo	J. J.			9 6								
Site: Solutia WG Krummrich Facility			2 days			MS (0	_	8	5.2	Se se	ι×i		F							Job / SDG No.: ,	
P O # 42447936			1 day			Filtered Sample (Y Perform MS / MSD	SVOCs by 8270	260	Total Fe/Mn by	Alk/CO2 by 310.1 Chloride by 325.2	Dissolved Gases	353.2	TOC by 415.1	Fe/Mn by	DOC by 415.1							
			Sample			SPE	by	by 8	e e	2 a	8 5	Nitrate by	4	Dissolved	> 4							
	Sample	Sample	Type (C=Comp,		#of	ered	ö	Voce	<u>8</u>	잉물	8	rate	O	los	ပ္ခ	1			İ	ı		
Sample Identification	Date	Time	G=Grab)	Matrix		Filter	S	8	Tat	취등	Sig	ž	[2]	<u> </u>	2						Sample Specific Notes	s:
CPA-MW-5D-0215	43/15	1420	G	w	ilo		یځ	3	í.		3	۷	3									
CPA - MW-5D-F(0.2)-0215		1	1	• 72600	4									Trained 1	5							
	1 1	1-15			16		2	3	î	4 4	3	2	3	- I	T							
35A-MW-3D-0215	 	1515	 		4			مرره	-	Ť	1	1465		, 	₹				T			
BSA-MW-3D-F(0.2)-0215					<u> </u>	┝╌	+		-	_	-		H		4	┪┈	-	\vdash	\dashv	-		
BSA-MW-3D-0215-EB	4		,4		5		2	3			-			4		<u> </u>	\blacksquare					
1015 CM TripBlank #3	0.2 <u></u>				2			2							_							
											ĺ			-								
									-		1					1			1			
				<u> </u>	<u> </u>	┞╌┞╴			-		+	\vdash	\vdash	╌┼	-							
5 HILL															_	Ш						
						П					1											
		-				╂╌╂╌	1-		-+		+	-	-	+	-							
Laudin Carlos							F.				1				_	680-	1095	75 C	hain	of Cu	stody	
A De la Contraction de la Cont															ı	į.	1 1		ŧ	1	ł	
Preservation Used: 1= lice, 2= HCl; 3= H2SO4; 4=HNO3; 5=	NaOH; 6=	Other						¥2,	4	1 1	2	1,3	3	4	3							
Possible Hazard Identification: Are any samples from a listed EPA Hazardous Waste? Please Comments Section if the lab is to dispose of the sample.						S	ampl	e Dí	spos	sal (A	l fee	may	be a	isse:	ssed	if sa	mple	es ar	e reta	ained	longer than 1 month)	
Non-Hazard	Po	son B	[] Աո	known				Retu	um to	Client		[√ (Dispos	al by I	Lab			Archi	ve for_	Months	
Special Instructions/QC Requirements & Comments:			\sim		-	******				,							ere.	*			a - 0	-
VOC headspace upon sampling: Yes(No			68	FQ	09	5	7	2	ween.	AND THE PARTY OF T			Company of Mil	2,	0	8	(C	F)	0;	٩,	0.5%	
Custody Seals Intact: Yes No · ·	Custody 8	Seal No.:	41931	ų –					Cool	er Te	mp.	(°C):	Obs'	d:			Corr	d:			Therm ID No.:	
Relinguished by:	Company			Date/Ti		R	eceiv	ed b	y:						C	ompa	any:	_			Date/Time:	
for Burdues	Coold	L.C		2/3/1	<u>`</u>										\perp							
Relinquished by:	Сотрапу			Date/Ti	me:	R	eceiv	ed b	y:						C	ompa	any:				Date/Time:	
Refinquished by:	Company			Date/Ti	me:	R	(ceiv	e d in) Lat	orato	ory by	v: /			c	ompa	any:	3.0			Date/Time:	20
						_[Z	X	Y)			X	0	· ·		TA	<u> </u>		J.		0224-15 M	100
S				•		······································												For	n No	CA-	C-W1-002, Rev. 4.3, dated 12/	05/2013

Chain of Custody Record

Savannah, GA 31404

phone 912.354.7858 fax	Reg	ulatory Pro	gram: [] DW [NPI	ŒS 🗔	_] R	CRA		Other	E.		,			· · · · · · · · · · · · · · · · · · ·		Volvio-rom	.,.,.,					Lapo	orator	ies, inc.
Client Contact	Project	Manager: Ar	manda Dert	nake		Site	Cont	tact:	Lori	Bind	ner			Date		3					CC	C No:			MUGMUC-12	74-7-1-7-1-7-1-7-1-7-1-7-1-7-1-7-1-7-1-7
Golder Associates Inc.	Tel/Fax	: 636-724-91	91 .			Lab	Cont	act:	Mich	ele l	<erse< td=""><td>y</td><td>- (</td><td>Carr</td><td>ier:</td><td>E</td><td>dE</td><td>X</td><td></td><td></td><td></td><td><u> </u></td><td>of</td><td>-</td><td>COCs</td><td></td></erse<>	y	- (Carr	ier:	E	dE	X				<u> </u>	of	-	COCs	
820 South Main Street		Analysis T	urnaround	Time			T			4									ļ		1	mpler:	**************************************	-1 A-0000		
St. Charles, MO 63301	√ C	ALENDAR DAYS	W	ORKING D	AYS					375	io.									İ	1	r Lab U		nly:	1	
(636) 724-9191 Phone		TAT if different	from Below S	Standard]_[2				200	3 5			g١							4	alk-in Cl				
(636) 724-9323 FAX			2 weeks			ŹΣ			اه	fate	82			6010C							Lai	b Samp	₩ng:		<u></u>	
Project Name: 1Q15 LTM GW Sampling-1403345			1 week			Filtered Sample (Y/N) Perform MS / MSD (Y/			60100	2/Sulfate by	Dissolved Gases by RSK 175	1	l	<u>\$</u>								/ SDG	· Ma ·			
Site: Solutia WG Krummrich Facility			2 days			원	270	ွ	9 5	25.	See	3.2	·	Ϋ́	-						100	11 300	140			
P O # 42447936			1 day Sample	-		§a sa	SVOCs by 8270	826	Total Fe/Mn by	Chloride by 325.2	Ö	Nitrate by 353.2	TOC by 415.1	Dissolved Fe/Mn	415.						—		earner metalistis			
			Туре			Filtered	Cs	s by	9 5	2 월	ş Ş	te D	â	Š.	DOC BY											
	Sampl Date	e Sample Time	(C=Comp, G≃Grab)	Matrix	# of Cont,	重量	Š	ő	otal		Sissi	litra	00	Jiss	8	-						Sa	mple :	Specifi	c Note	es:
Sample Identification				1000-004	dilloren erroren	┞	100			_		-		-		+-	1		-		+==					
GWE-5D-0215	23/15	5 0945	LG_	W	14			-3		, and	3	Z	3	\perp	-	1	_		\perp	-						
GWE-5D-F(0.2)-0215		حالت	1		4									1.	3		╀		_ _	_						
BUE-5M-0215		1020			14			-3	ا	Ì	3	2	.3			-	1_		_		┷					
GWE-5H-F(0.2)-0215	en, especiales	ı.			L		on the second								3	_	<u> </u>			\bot						
GWE-55-0215	A STATE OF THE PARTY OF THE PAR	1052		11	14	DATE OF THE OWNER OWNER		3	Î	1	3	2	3			\perp				\perp						
(SWE-65-F(0.2)-0215		l		and the same	ų	and the same		-						1	3											
GWE-3D-0215		1210			14	and the same of th	or and contract	3	S COMPANY	1	3	2	3													
CSWE-3D-F(0.2)-0215	-	-dec			L.	П				\top	1			1	3											
LOIS SU TOIS DE LA FEZ	-				2			2	1	1				T			1						,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
1015 CTM Trip Blank #2									+	+	+	-	1	十	1	+	1-		十	\top	\top					
	 								\dashv		 -	\vdash	-	\dashv	+	\top	\vdash		+	+	+					
								-	-	+	+		\dashv		+		╁┈		+	+	-					
Preservation Used: 1= ice, 2= HCl; 3= H2SO4; 4=HNO3; 5=i	USOH 6	Other			le se			7	24 差 元	10.24	2	1.3	33.5	4	3				700 0							
Possible Hazard Identification: Are any samples from a listed EPA Hazardous Waste? Please L Comments Section if the lab is to dispose of the sample.					2001	Sa	ampl	e Dis	spos	al (A	fee	may	be a	sse	ssed	if sa	mpl	es ar	e ret	ained	d lon	ger tha	ın 1 m	onth)		
☑ Non-Hazard ☐ Flammable ☐ Skin Irritant	☐ F	oison B	☐ Unl	known				Retu					√ [-		***************************************				ive for			Months			
Special Instructions/QC Requirements & Comments: VOC headspace upon sampling: Yes No				4444	65	30	-(1)	7 =	5	7=	5 -	Ó	2	1	• =	30). S	6	F)) (09,	0	.5	ć	-
Custody Seals Intact: Yes No	Custody	Seal No.: ٤	119312				*********	(Coole	er Te	тр. ((°C):	Obs'	d:			Corr	d			The	rm ID N	10::		**************************************	
Relinguished by:	Company: Date/Tim				R	eceiv	ed by	y:	***************************************					C	ompa	апу:				Dat	te/Time	:				
Refinquished by:	Compar	•		Date/Ti		Re	eceiv	ed by	y-						C	ompa	any:				Dat	te/Time	:			
			***************************************					*25.1 :	-(-15		نابيد.		71		-						1001	te/Time	<u> </u>			
Relinquished by:	Compar	ıy:		Date/Ti	ne:	*	EC640	ed in		Cratc	лу 6) <u>Х</u> . <u>Д</u>	~ (<u> </u>	Ĺ	7	TA	111y	A	<i>O</i> ,		0	204	45	5 (39:	38

Form No. CA-C-WI-002, Rev. 4.3, dated 12/05/2013

5102 LaRoche Avenue

Chain of Custody Record

Savannah, GA 31404	_				v.m.	_	_														THE LEADER IN ENVIRONMENTAL TES	
phone 912.354.7858 fax		latory Pro] DW [NPE	_	TO SECTION AND AND ADDRESS OF THE PERSON AND	41.4.20	4074500000	Libraria de la constitución de l			1					ie 			TestAmerica Laboratories,	inc.
Client Contact	<u> </u>	lanager: A		nake						i Bind			-		: 2		15				COC No:	
Golder Associates Inc.		36-724-91				Lab	Cont	act:	Wic	hele	Kerse	y		Carr	ier:	FR	d E	.V.		***************************************	t oftCOCs	
820 South Main Street	+	Analysis T								1	5 5										Sampler:	
St. Charles, MO 63301		ENDAR DAYS	L7	ORKING D	DAYS	_				5	ر تا ت										For Lab Use Only:	
(636) 724-9191 Phone	—	TAT if different		Standard						4	5 S			8	ł						Walk-in Client: Lab Sampling:	
(636) 724-9323 FAX			2 weeks			Z	-		ပူ	يًا ا	325.2/Sulfate			60100							Lab Sampling.	
Project Name: 1Q15 LTM GW Sampling-1403345	4		1 week			Člg			6010C	- 8	ğ à										lah / CDC No.	
Site: Solutia WG Krummrich Facility P O # 42447936			2 days			ad N	2,0		6	5 6	Seg 22	353.2	_	Ž١	~-						Job / SDG No.:	
F O # 42447936		·	1 day Sample	·	······	Sample (8 2	826	틸	6	a g	32	115.	ا <u>چ</u>	415							
Sample Identification	Sample Date	Sample Time	Type (C=Comp, G=Grab)	Matrix	# of Cont.	Filtered Sample (Y / N) Perform MS / MSD (Y / N)	SVOCs by 8270	VOCs by 8260	Total Fe/Mn by	Alk/CO2 by 310.1	Dissolved Gases by RSK 175	Nitrate by	TOC by 415.1	Dissolved Fe/Mn by	DOC by	OHE WITH	gi katorogay			worked movimen	Sample Specific Notes:	
GWE-ZD-OZI5	2/4/15	1055	G	W	14			3	i	1]	1 3	۲	3									
GWE-2D-F(0,2)-0215	,	<u>l</u>	1		T									1	3							
GWE -1D - 0215		1Z38			14			3	r) and	1 1	3	2	3									
GWE-ID-F(0.2)-0215	1	لل	سلم	1	4									ì	3							
1015 LTM Trip Blank #3		,, ,, ,, ,		***************************************	2	ONE-HANZAGIIII.		2														
)						atomatica.																
							STORY CHICAGO					-										
) 																						
						N TOUR										i						
						and the same of th										(80-1	096	41 C	hain d	of Custody	
						QUINAMINA									T	ı	1 1	1	i	ı		
Preservation Used: 1= Ice, 2= HCl; 3= H2SO4; 4=HNO3; 5=	NaOH; 6= 0	Other									1 2											
Possible Hazard Identification: Are any samples from a listed EPA Hazardous Waste? Please L Comments Section if the lab is to dispose of the sample. Non-Hazard Flammable Skin Irritant		Waste Co		sample i	n the	S	ampl										mple	es ar		tained	l longer than 1 month) Months	
	Pui:	SUIFD. :	{_j Uii	CHOWH				Keu	umto	Client		į.	<u> </u>	JISPOS	sal by	Lad		<u></u>	AIC	IIVE IOI.	MOTICAS	
Special Instructions/QC Requirements & Comments: VOC headspace upon sampling: Yes(No)																						
Custody Seals Intact: Yes No	Custody S	eal No.:	41931(2			PROTECTION OF THE PROTECTION O	(Cool	ler Te	emp.	(°C):	Obs'	d:			Corr				Therm ID No.:	Continue
Relinquished by: La Barana	Company:			Date/Til	me: ぶ	7	eceiv	ed b	Y.	DI	J				Ć	ompa	iny:<	A	1		Date/Time: 0205-15	7
Relinquished by:	Company:			Date/Ti		R	eceiv	ed b	y.) 	-rise. postale		- PARTICIPATION OF	P	_	ompa	_	war Pi	<u>v</u>	~	Date/Time:	*LEWER
Relinquished by:	Company:			Date/Ti	me:	R	eceiv	ed ir	n Lak	oorat	ory by	/ :	Company: Date/Time:									

Chain of Custody Record

<u>TestAmerica</u>

5102 LaRoche Avenue

Savannah, GA 31404 TestAmerica Laboratories, Inc. phone 912.354.7858 fax Regulatory Program: DW NPDES RCRA Other: 2/5/15 COC No: Project Manager: Amanda Derhake Site Contact: Lori Bindner Date: **Client Contact** Tel/Fax: 636-724-9191 Lab Contact: Michele Kersey Carrier: Fediex COCs Golder Associates Inc. 820 South Main Street **Analysis Turnaround Time** Sampler: 375.4 For Lab Use Only: St. Charles, MO 63301 CALENDAR DAYS WORKING DAYS RSK 175 Walk-in Client: (636) 724-9191 Phone ģ TAT if different from Below Standard 6010C Lab Sampling: FAX (636) 724-9323 2 weeks Total Fe/Mn by 6010C Project Name: 1Q15 LTM GW Sampling-1403345 1 week ð ģ Site: Solutia WG Krummrich Facility Job / SDG No.: 2 days Dissolved Gases Nitrate by 353.2 TOC by 415.1 P O # 42447936 DOC by 415.1 1 day Sample Type Sample Sample (C=Comp Date Time Sample Identification G=Grab) Matrix Cont. Sample Specific Notes: BSA-MW-5D-0215 3 1025 3 2/5/15 Cs W ها ا BSA-MW-5D-F(0.2)-02157 4 3 5 BSA-MW-5D-0215-MS 2 3 5 BSA-MW-5D-0215-MSD 3 35A-MW-4D-0215 323 u44 3 16 SA-MW-4D-F(0.2)-0215 13 323 BSA-MW-2D-0215 23 1325 BSA-MW-ZD-F(0,2) ~0215 1 3 PA-MW-4D-0215 16 23 3 0933 CPA - MW-4D - F(0,Z)-0Z15 4 13 CPA - MW-3D-DZ15 1/1/3 231 ما 1 4 PA-MW-3D-F(0,2)-0215 13 Preservation Used: 1= Ice, 2= HCl; 3= H2SO4; 4=HNO3; 5=NaOH; 6= Other 1 2 4 1 1 2 1,3 3 Possible Hazard Identification: Sample Disposal (A fee may be assessed if samples are retained longer than 1 month) Are any samples from a listed EPA Hazardous Waste? Please List any EPA Waste Codes for the sample in the Comments Section if the lab is to dispose of the sample. Non-Hazard Poison B Unknown Return to Client ✓ Disposal by Lab Special Instructions/QC Requirements & Comments: VOC headspace upon sampling: Yes/No Cooler Temp. (°C): Obs'd: Corr'd: Therm ID No. Custody Seal No.: 419315/436228 Custody Seals Intact: Yes Relinquished by: Company: Date/Time: Regerved by: Company: - Bendrer Golder 2/5/15 elinquished by: Date/Time: Company: Received by: Relinquished by: Company: Date/Time: Company:

9

00

ح" ا"د

7

Ġ.

3 4

5-

5102 LaRoche Avenue

Chain of Custody Record

THE LEADER IN ENVIRONMENTAL TESTIN

Savannah, GA 31404

Regulatory Program: DW NPDES RCRA Other: TestAmerica Laboratories, Inc. phone 912.354.7858 fax COC No: Date: 4/5/15 **Client Contact** Project Manager: Amanda Derhake Site Contact: Lori Bindner Carrier: Fed Ex of 2 COCs Tel/Fax: 636-724-9191 Lab Contact: Michele Kersev Golder Associates Inc. 820 South Main Street **Analysis Turnaround Time** Chloride by 325.2/Sulfate by 375.4 St. Charles, MO 63301 CALENDAR DAYS WORKING DAYS For Lab Use Only: RSK 175 Walk-in Client: (636) 724-9191 Phone TAT if different from Below Standard 6010C FAX Lab Sampling: (636) 724-9323 V. 2 weeks Fotal Fe/Mn by 6010C Dissolved Gases by R Nitrate by 353.2 Project Name: 1Q15 LTM GW Sampling-1403345 П 1 week ģ Site: Solutia WG Krummrich Facility Job / SDG No.: 2 days P O # 42447936 TOC by 415.1 DOC by 415.1 1 day Sample Type Sample Sample (C=Comp. Date Time G=Grab) Matrix Cont. Sample Identification Sample Specific Notes: PA-MW-3D-0215-AD (-5 2/5/15 1245 111323 PA-MW-2D-0215 1415 16 4 13 PA-MW-2D-F(0.2)-0215 5 DA-MW-2D-0215-AD 3 1915 CTM Trip Blank #4 Preservation Used: 1= Ice, 2= HCI; 3= H2SO4; 4=HNO3; 5=NaOH; 6= Other 1 2 4 1 1 2 1,3 3 4 3 Possible Hazard Identification: Sample Disposal (A fee may be assessed if samples are retained longer than 1 month) Are any samples from a listed EPA Hazardous Waste? Please List any EPA Waste Codes for the sample in the Comments Section if the lab is to dispose of the sample. Archive for_ Flammable Poison B Unknown Return to Client ✓ Disposal by Lab Special Instructions/QC Requirements & Comments: VOC headspace upon sampling: Yes(No) Custody Seal No.: 419315/436228 Cooler Temp. (°C): Obs'd: Therm ID No.: Custody Seals Intact: Yes Company: Date/Time: Relinquished by: Binanes <alder Kelinquished by: Date/Time: Company: Date/Time: Relinquished by: Company:

5102 LaRoche Avenue

Chain of Custody Record

THE LEADER IN ENVIRONMENTAL TEST

Savannah, GA 31404

Regulatory Program: DW NPDES RCRA Other: phone 912.354.7858 fax TestAmerica Laboratories, Inc. **Client Contact** Project Manager: Amanda Derhake Site Contact: Lori Bindner COC No: Date: 2/6/15 Tel/Fax: 636-724-9191 Golder Associates Inc. Lab Contact: Michele Kersev Carrier: Fed Ex COCs 820 South Main Street **Analysis Turnaround Time** 325.2/Sulfate by 375.4 St. Charles, MO 63301 WORKING DAYS CALENDAR DAYS For Lab Use Only: (636) 724-9191 Phone Walk-in Client: TAT if different from Below Standard Dissolved Fe/Mn by 6010C (636) 724-9323 FAX 1 Lab Sampling: 2 weeks Project Name: 1Q15 LTM GW Sampling-1403345 1 week Site: Solutia WG Krummrich Facility П 2 days Job./ SDG No.: Nitrate by 353.2 P O # 42447936 1 day Chloride by Sample Type Sample Sample # of (C=Comp. Date Time G=Grab) Matrix Cont. Sample Identification Sample Specific Notes: G 46/15 3 2 BSA-MW-15-0215 0932 110 BSA-MW-1S-F(0.2)-0215 4 3 BSA-MW-15-0215-EB 3 0955 PA-MW-20-0215 3 11 323 0246 PA-MW-BD-F(0,2)-0215 4 3 Q15 LTM TripBlank#S Preservation Used: 1= Ice, 2= HCI; 3= H2SO4; 4=HNO3; 5=NaOH; 6= Other 1 2 4 1 1 2 1,3 3 4 3 Possible Hazard Identification: Sample Disposal (A fee may be assessed if samples are retained longer than 1 month) Are any samples from a listed EPA Hazardous Waste? Please List any EPA Waste Codes for the sample in the Comments Section if the lab is to dispose of the sample. ✓ Non-Hazard Poison B Unknown Flammable Return to Client Archive for Disposal by Lab Special Instructions/QC Requirements & Comments: VOC headspace upon sampling: Yes/No Custody Seals Intact: Custody Seal No.: 818 (038 Cooler Temp. (°C): Obs'd: Yes Company: Date/Ţime: Received by: Golder 2/6/15 Date/Time: Company: Received by: Relinquished by: Date/Time: Received in Laboratory by: Date/Time: Company: Company:

Form No. CA-C-WI-002, Rev. 4.3, dated 12/05/2013

APPENDIX C
QUALITY ASSURANCE REPORT

QUALITY ASSURANCE REPORT

LONG-TERM MONITORING PROGRAM SOLUTIA INC. W.G. KRUMMRICH FACILITY SAUGET, ILLINOIS

Prepared For: Solutia Inc.

575 Maryville Centre Drive St. Louis, MO 63141 USA

Submitted By: Golder Associates Inc.

820 S. Main Street, Suite 100 St. Charles, MO 63301 USA

April 2015 140-3345

A world of capabilities delivered locally

Table of Contents

1.0	INTRODUCTION	1
2.0	VOLATILE ORGANIC COMPOUNDS	3
2.1	Receipt Condition and Sample Holding Times	4
2.2	Blanks	4
2.3	Surrogate Spike Recoveries	4
2.4	Laboratory Control Sample Recoveries	4
2.5	Matrix Spike/Matrix Spike Duplicate (MS/MSD) Samples	5
2.6	Analytical Duplicates	5
2.7	Internal Standard Responses	5
2.8	Results Reported From Dilutions	5
3.0	SEMI-VOLATILE ORGANIC COMPOUNDS	5
3.1	Receipt Condition and Sample Holding Times	5
3.2	Blanks	6
3.3	Surrogate Spike Recoveries	6
3.4	Laboratory Control Sample Recoveries	6
3.5	Matrix Spike/Matrix Spike Duplicate (MS/MSD) Samples	6
3.6	Analytical Duplicates	7
3.7	Internal Standard Responses	7
3.8	Results Reported From Dilutions	7
4.0	INORGANICS AND GENERAL CHEMISTRY	7
4.1	Receipt Condition and Sample Holding Times	7
4.2	Blanks	8
4.3	Laboratory Control Sample Recoveries	8
4.4	Matrix Spike/Matrix Spike Duplicate (MS/MSD) Samples	8
4.5	Results Reported From Dilutions	8
5.0	SUMMARY	8
6.0	REFERENCES	. 10

i

1.0 INTRODUCTION

Golder Associates Inc. (Golder) completed a review of analytical data for the groundwater samples collected on between February 2 and February 6, 2015 at the Solutia Inc. (Solutia) W.G. Krummrich (WGK) facility (Site) in Sauget, Illinois. Golder collected a total of thirty six (36) samples from groundwater monitoring wells and piezometers as part of the 1st Quarter 2015 (1Q15) Long-Term Monitoring Program (LTMP). Twenty-one (21) groundwater samples, including wells PM1M and PM1D installed in January 2015, six (6) trip blanks, three (3) equipment blanks (EB), three (3) analytical duplicates (AD), and two (2) matrix spike/matrix spike duplicate (MS/MSD) pairs were prepared. Groundwater monitoring locations were located at the WGK facility or approximately 1.0 to 1.5 miles north of the Site. The samples were submitted to the TestAmerica Laboratories, Inc. (TestAmerica) facility located in Savannah, Georgia for analysis using United States Environmental Protection Agency (USEPA) methods, standard methods and USEPA SW-846 test methods. Samples submitted to TestAmerica were analyzed for volatile organic compounds (VOCs), semi-volatile organic compounds (SVOCs), total and dissolved metals, dissolved gases, and general chemistry parameters. The analytical results were placed into six (6) sample delivery groups (SDGs) and described in the table below:

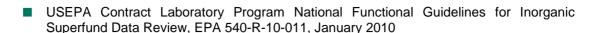
Sample Delivery Group (SDG)	Sample Identification
	PM1M-0215
	PM1D-0215
	PM1D-0215-AD
KPS135	ESL-MW-A-0215
14 0100	ESL-MW-C1-0215
	ESL-MW-C1-0215-EB
	ESL-MW-D1-0215
	1Q15 LTM Trip Blank #1
	BSA-MW-3D-0215
KPS136	BSA-MW-3D-0215-EB
, o	CPA-MW-5D-0215
	1Q15 LTM Trip Blank #3
	GWE-3D-0215
	GWE-5S-0215
KPS137	GWE-5M-0215
	GWE-5D-0215
	1Q15 LTM Trip Blank #2
	GWE-1D-0215
KPS138	GWE-2D-0215
	1Q15 LTM Trip Blank #3
KPS139	BSA-MW-2D-0215
	BSA-MW-4D-0215
	BSA-MW-5D-0215

140-3345

	CPA-MW-2D-0215
KPS139 (continued)	CPA-MW-2D-0215-AD
	CPA-MW-3D-0215
	CPA-MW-3D-0215-AD
	CPA-MW-4D-0215
	1Q15 LTM Trip Blank #4
	BSA-MW-1S-0215
KPS140	BSA-MW-1S-0215-EB
KF3140	CPA-MW-1D-0215
	1Q15 LTM Trip Blank #5

The samples were collected and analyzed in general accordance with the Revised Long-Term Monitoring Program (LTMP) Work Plan (Work Plan) (Solutia 2009). Groundwater samples were analyzed for VOCs, SVOCs, total and dissolved metals, dissolved gases, and general chemistry parameters. The general chemistry parameters included chloride, nitrate, sulfate, total organic carbon (TOC), alkalinity, carbon dioxide, and dissolved organic carbon (DOC). Six (6) trip blanks, three (3) EBs, three (3) ADs, and two (2) MS/MSD pairs were submitted and analyzed for VOC and SVOC analysis. SVOC analysis was not performed on the supplemental wells north of the Site. The following analytical methods used are from USEPA document SW-846, Test Methods for Evaluating Solid Waste, Revision 6 contained in Final Update III August 2002 and listed below:

- VOCs were analyzed using <u>USEPA SW-846 Method 8260B Volatile Organic Compounds</u> by Gas Chromatography/Mass Spectrometry (GC/MS)
- SVOCs were analyzed using <u>USEPA SW-846 Method 8270D Semi-Volatile Organic</u> Compounds by Gas Chromatography/Mass Spectrometry (GC/MS)
- Total and Dissolved Iron and Manganese were analyzed by <u>USEPA SW-846 Method</u> 6010C Inductively Coupled Plasma-Atomic Emission Spectrometry


The following standard methods were used to analyze monitored natural attenuation (MNA) parameters:

- Dissolved Gases analyzed by Method RSK-175
- Alkalinity and Free Carbon Dioxide analyzed by <u>USEPA Method 310.1 by Titration</u>
- Chloride analyzed by <u>USEPA Method 325.2 by Automated Colorimetry</u>
- Nitrogen, Nitrate analyzed by <u>USEPA Method 353.2 by Automated Colorimetry</u>
- Sulfate analyzed by <u>USEPA Method 375.4 by Spectrophotometer</u>
- Total and Dissolved Organic Carbon analyzed by <u>USEPA Method 415.1</u>

Golder completed validation of the analytical data following the general guidelines in Section 4.4 Data Review and Validation of the Work Plan. The Work Plan specifies that the most recent versions of the national data validation guidelines be used for data review. The following guidelines were generally used:

■ USEPA Contract Laboratory Program National Functional Guidelines for Superfund Organic Methods Data Review, EPA-540-R-08-01, June 2008

These documents are hereafter referred to as the "functional guidelines". If there was a conflict between the functional guidelines and the quality control criteria specified in the analytical method, the method-specific criteria were used. The SDGs were prepared as a Level IV data report package containing quality control information and raw data. Golder completed Level III review of 100% of the analytical data and Level IV review of 10% of the analytical data.

Data that has been qualified by the data validator has been added to the laboratory report. The qualifiers indicate data that did not meet acceptance criteria and corrective actions were not successful or not performed. Laboratory data qualifiers are defined below:

- U The analyte was analyzed for but not was not detected
- J The analyte was detected and the result is less than the reporting limit (RL) but greater than or equal to the method detection limit (MDL) and the concentration is an approximate value
- X Surrogate is outside control limits
- F1 MS/MSD Recovery exceeds the control limits
- * LCS or LCSD exceed the control limits
- H Sample was prepped or analyzed beyond specified holding time

Golder data qualifiers are defined below:

- U The analyte was analyzed for but not detected
- J The analyte was detected and the result is considered an estimated value
- UJ The analyte was not detected at or above the MDL; the detection limit is estimated
- D The analyte was analyzed at a dilution

Sections 2, 3 and 4 summarize the specific instances where quality control criteria in the functional guidelines were not met. As specified in the functional guidelines, if the non-adherence to quality control criteria is slight, professional judgment was used in qualification of the data. However, if the non-adherence is significant, qualification and rejection of the data may be necessary. A summary of qualified data is provided in Section 5.0.

2.0 VOLATILE ORGANIC COMPOUNDS

Samples were collected from twenty-one (21) groundwater monitoring locations and analyzed for VOCs. Analytical duplicate samples were collected from three (3) sampling locations, PM1D, CPA-MW-2D and CPA-MW-3D. Three (3) EBs and six (6) trip blanks were also prepared and shipped for laboratory analysis. The samples were submitted to TestAmerica, placed into six (6) data packages or SDGs (KPS135, KPS136, KPS137, KPS138, KPS139, and KPS140), and were prepared and analyzed using

SW-846 Method 8260B. Samples were validated in general accordance with the functional guidelines. Results of the validation are summarized below.

2.1 Receipt Condition and Sample Holding Times

The SDG Case Narrative, chain-of-custody, login sample receipt checklist, and analysis dates were reviewed to verify analytical method holding times and proper preservation upon sampling. A summary of affected SDGs is provided below.

<u>KPS135, KPS136, KPS137, KPS138, KPS139, and KPS140</u> – Samples were received at temperatures below the 4°C+/-2°C criteria. The samples were otherwise received in good condition and data qualification was not required.

2.2 Blanks

Laboratory and field blanks, including trip blanks, method blanks and equipment blanks are prepared and analyzed to determine if contamination occurred as a result of laboratory or field activities.

Six (6) laboratory prepared trip blanks, one (1) for each SDG, were shipped and analyzed for VOCs during the 1Q15 event to evaluate whether cross contamination occurred during sample shipment. Results for the trip blanks were non-detect.

Laboratory method blanks were performed for each laboratory system as outlined for each analytical method to evaluate whether cross contamination occurred during laboratory analysis activities. Results for the method blanks were non-detect.

Three (3) EBs were collected during the 1Q15 event to assess the effectiveness of the decontamination procedure. Detections were noted in the following EBs:

■ BSA-MW-1S-0215-EB (SDG KPS140): benzene at 130 μg/L, 1,2-dichlorobenzene at 2.3 μg/L and 1,4-dichlorobenzene at 3.5 μg/L

The samples associated with the EBs were not qualified based on the 5Xs concentration criteria.

2.3 Surrogate Spike Recoveries

Samples to be analyzed for VOCs were spiked with surrogate compounds: 4-bromofluorobenzene, 1,2-dichloroethane-d4, dibromofluoromethane, and toluene-d8, prior to analysis, to evaluate overall laboratory performance. Surrogate recoveries were within control limits.

2.4 Laboratory Control Sample Recoveries

A laboratory control sample (LCS) is analyzed on each laboratory system to evaluate the analytical method accuracy and laboratory performance. LCS recoveries were within acceptance criteria.

2.5 Matrix Spike/Matrix Spike Duplicate (MS/MSD) Samples

MS/MSD samples are analyzed to determine long term precision and accuracy of the analytical method on various matrices. One (1) MS/MSD pair is sampled for every twenty (20) field samples. Two (2) MS/MSD pairs were collected during the 1Q15 event associated with samples ESL-MW-A and BSA-MW-5D. MS/MSD accuracy data did not meet criteria for benzene and chlorobenzene associated with sample BSA-MW-5D. MS/MSD precision data met criteria. Since MS/MSD data alone cannot be used to evaluate the precision and accuracy of data, data qualification was not required for associated samples.

2.6 Analytical Duplicates

One (1) AD is collected for every ten (10) field samples to determine the overall precision of field and laboratory methods. Three (3) ADs were collected during the 1Q15 event associated with samples PM1D, CPA-MW-2D and CPA-MW-3D. The relative percent difference (RPD) between the samples and the associated ADs did not exceed 25%; therefore, data qualification was not required.

2.7 Internal Standard Responses

Internal standard performance criteria ensure that GC/MS sensitivity and response are stable during each analysis. Internal standard area counts did not vary by more than a factor of two (2) from the associated 12 hour calibration standard. Internal standard retention times did not vary more than +/-30 seconds from the retention time of the associated 12 hour calibration standard. Data qualification was not required.

2.8 Results Reported From Dilutions

Several VOC samples required dilutions due to high levels of target analytes. Reporting limits were adjusted to reflect the dilution. Result qualifications are shown in Section 5.0.

3.0 SEMI-VOLATILE ORGANIC COMPOUNDS

Samples were collected from ten (10) groundwater monitoring locations and analyzed for SVOCs. An AD sample was collected from two (2) sampling locations, CPA-MW-2D and CPA-MW-3D. Two (2) EBs were also prepared and shipped for laboratory analysis. The samples were submitted to TestAmerica, placed into six (6) data packages or SDGs (KPS135, KPS136, KPS137, KPS138, KPS139, and KPS140), and were prepared and analyzed using SW-846 Method 8270D. Samples were validated in general accordance with the functional guidelines. Results of the validation are summarized below.

3.1 Receipt Condition and Sample Holding Times

The SDG Case Narrative, chain-of-custody, login sample receipt checklist, and analysis dates were reviewed to verify analytical method holding times and proper preservation upon sampling. A summary of affected SDGs is provided below.

KPS135, KPS136, KPS137, KPS138, KPS139, and KPS140 – Samples were received at temperatures below the 4°C+/-2°C criteria. The samples were otherwise received in good condition and data qualification was not required.

3.2 Blanks

Laboratory and field blanks, including method blanks and equipment blanks are prepared and analyzed to determine if contamination occurred as a result of laboratory or field activities.

Laboratory method blanks were performed for each laboratory system as outlined for each analytical method to evaluate whether cross contamination occurred during laboratory analysis activities. Results for the method blanks were non-detect.

Two (2) EBs were collected during the 1Q15 event, associated with sample BSA-MW-1S and BSA-MW-3D, to assess the effectiveness of the decontamination procedure. Results for the EBs were non-detect.

3.3 Surrogate Spike Recoveries

Samples to be analyzed for SVOCs were spiked with surrogate compounds: 2-flourobiphenyl, 2-fluorophenol, nitrobenzene-d5, phenol-d5, terphenyl-d14, and 2,4,6-tribromophenol, prior to analysis, to evaluate overall laboratory performance. Surrogate recoveries for the LCS run on batch 370829, in SDG KPS 136, were outside control limits for 2-fluorophenol, nitrobenzene-d5 and phenol-d5. Qualification not required. Surrogate recovery for BSA-MW-2D was outside the control limit for 2-fluorophenol. Qualification not required. Surrogates recoveries for CPA-MW-2D-AD were outside control limits for 2-fluorophenol, nitrobenzene-d5, phenol-d5, and 2,4,6-tribromophenol. CPA-MW-2D-AD was re-extracted and re-analyzed outside holding time. Result qualifications are shown in Section 5.0.

3.4 Laboratory Control Sample Recoveries

A LCS is analyzed on each laboratory system to evaluate the analytical method accuracy and laboratory performance. LCS/LCSD recoveries exceeded acceptance criteria for 2-chlorophenol and 1,4-dioxane, in SDG KPS136. Result qualifications are shown in Section 5.0.

3.5 Matrix Spike/Matrix Spike Duplicate (MS/MSD) Samples

MS/MSD samples are analyzed to determine long term precision and accuracy of the analytical method on various matrices. One (1) MS/MSD pair is sampled for every twenty (20) field samples. Two (2) MS/MSD pairs were collected during the 1Q15 event associated with samples ESL-MW-A and BSA-MW-5D. MS/MSD accuracy and precision data met criteria.

3.6 Analytical Duplicates

One (1) AD is collected for every ten (10) field samples to determine the overall precision of field and laboratory methods. Two (2) ADs were collected during the 1Q15 event associated with samples CPA-MW-2D and CPA-MW-3D. The RPD between CPA-MW-2D, and the AD, CPA-MW-2D-AD, exceeded 25%. Result qualifications are shown in Section 5.0.

3.7 Internal Standard Responses

Internal standard performance criteria ensure that GC/MS sensitivity and response are stable during each analysis. Internal standard area counts did not vary by more than a factor of two (2) from the associated 12 hour calibration standard. Internal standard retention times did not vary more than +/-30 seconds from the retention time of the associated 12 hour calibration standard. Data qualification was not required.

3.8 Results Reported From Dilutions

SVOC samples did not require dilutions.

4.0 INORGANICS AND GENERAL CHEMISTRY

Samples were collected from twenty-one (21) groundwater monitoring locations and analyzed for inorganics and general chemistry. The samples were submitted to TestAmerica, placed into six (6) data packages or SDGs (KPS135, KPS136, KPS137, KPS138, KPS139, and KPS140), and were prepared and analyzed using the following methods:

- Total and Dissolved Iron and Manganese analyzed by Method 6010C Inductively Coupled Plasma-Atomic Emission Spectrometry
- Dissolved Gases analyzed by Method RSK-175
- Alkalinity and Free Carbon Dioxide analyzed by <u>USEPA Method 310.1 by Titration</u>
- Chloride analyzed by <u>USEPA Method 325.2 by Automated Colorimetry</u>
- Nitrogen, Nitrate analyzed by USEPA Method 353.2 by Automated Colorimetry
- Sulfate analyzed by USEPA Method 375.4 by Spectrophotometer
- Total and Dissolved Organic Carbon analyzed by <u>USEPA Method 415.1</u>

Samples were validated in general accordance with the functional guidelines. Results of the validation are summarized below.

4.1 Receipt Condition and Sample Holding Times

The SDG Case Narrative, chain-of-custody, login sample receipt checklist, and analysis dates were reviewed to verify analytical method holding times and proper preservation upon sampling. A summary of affected SDGs is provided below.

KPS135, KPS136, KPS137, KPS138, KPS139, and KPS140 – Samples were received at temperatures below the 4°C+/-2°C criteria. The samples were otherwise received in good condition and data qualification was not required.

4.2 Blanks

Laboratory method blanks are prepared and analyzed to determine if contamination occurred as a result of laboratory activities.

Laboratory method blanks were performed for each laboratory system as outlined for each analytical method to evaluate whether cross contamination occurred during laboratory analysis activities. Results for the method blanks were non-detect.

4.3 Laboratory Control Sample Recoveries

A LCS is analyzed on each laboratory system to evaluate the analytical method accuracy and laboratory performance. LCS recoveries were within acceptance criteria; therefore, data qualification was not required.

4.4 Matrix Spike/Matrix Spike Duplicate (MS/MSD) Samples

MS/MSD samples are analyzed to determine long term precision and accuracy of the analytical method on various matrices. Although MS/MSD analysis was not required for inorganic and general chemistry per the Work Plan, the laboratory spiked groundwater samples BSA-MW-3D, CPA-MW-5D, PM1D, GWE-3D, GWE-5S, ESL-MW-A, and ESL-MW-C1 for various analytes. Some MS/MSD data for these samples was outside acceptance criteria. Since MS/MSD data alone cannot be used to evaluate the precision and accuracy of data, data qualification was not required for associated samples.

4.5 Results Reported From Dilutions

Samples in each SDG required dilutions due to high levels of target analytes. Reporting limits were adjusted to reflect the dilution. Result qualifications are shown in Section 5.0.

5.0 SUMMARY

Golder validated the data collected during the 1Q15 sampling event from the Solutia Inc. WGK facility in general accordance with the Work Plan and USEPA functional guidelines. Although some data required qualifications due to quality control criteria that were not achieved, the data were deemed usable. Where a positive result was qualified as estimated, the analyte should be considered present. Similarly, a result that was qualified as an estimated reporting limit should be considered not present for the purposes of this program, although the limit itself may not be precise. The completeness for the entire data set was 100%.

Qualification Summary Table

9

Quality Control Issue	Compound(s)	Qualifier	Samples Affected
Compounds analyzed at a dilution	Benzene, Chlorobenzene, 1,2-Dichlorobenzene, 1,3- Dichlorobenzene, 1,4- Dichlorobenzene, Chloride, Sulfate, TOC, and DOC	D	PM1M, PM1D, ESL-MW-A, ESL-MW-C1, ESL-MW-D1, GWE-1D, GWE-2D, GWE-3D, GWE-5D, GWE-5M, GWE-5S, BSA-MW-1S, BSA-MW-1S-EB, BSA-MW-2D, BSA-MW-3D, BSA-MW-4D, BSA-MW-5D, CPA-MW-1D, CPA-MW-3D-AD, CPA-MW-4D, CPA-MW-4D, and CPA-MW-5D
Duplicate outside RPD	2-Chlorophenol	J	CPA-MW-2D and CPA-MW-2D-AD
LCS/LCSD outside control limits	4-Chloroaniline, 2- Chlorophenol, 1,2,4- Trichlorobenzene, and 1,4-Dioxane	J	BSA-MW-3D, BSA-MW-3D-EB and CPA-MW-5D
Detected at reporting limit	2-Chlorophenol and Chlorobenzene	U	BSA-MW-3D and BSA-MW-1S-EB
Re-extracted and re-analyzed outside hold time	2-Chlorophenol and 1,2,4- Trichlorobenzene	J	CPA-MW-2D-AD

6.0 REFERENCES

Solutia Inc., 2009. Revised Long Term Monitoring Program Work Plan, Solutia Inc., W.G. Krummrich Facility, Sauget, Illinois, May 2009.


10

USEPA, 2010. Contract Laboratory Program National Functional Guidelines for Inorganic Superfund Data Review.

USEPA, 2008. Contract Laboratory Program national Functional Guidelines for Superfund Organic Methods Data Review.

APPENDIX D
GROUNDWATER ANALYTICAL RESULTS
(INCLUDING DATA VALIDATION REPORTS)

Level IV Data Validation Summary Solutia Inc., W.G. Krummrich, Sauget, Illinois 1Q15 Long-Term Monitoring Program

Company Name: Golder Associates
Project Name: WGK-1Q15 LTM
Reviewer: L. Bindner
Laboratory: TestAmerica
SDG#: KPS135

Matrix: Water

Project Manager: A. Derhake Project Number: 140-3345 Sample Date: February 2015

Α Ν

	ytical Method: <u>VOC (8260B), Dissolved Gases (RSK-175), Metals (6010C), Alkalinity (310.1), C</u> <u>e (353.2), Sulfate (375.4), TOC (415.1), and DOC (415.1)</u>	<u>Shloride (S</u>	<u>325.2)</u>	, Nitrogen, Nitra	<u>ate</u>
F(0.2	ple Names: <u>PM1M-0215, PM1M-F(0.2)-0215, PM1D-0215, PM1D-0215-AD, PM1D-F(0.2)-0215</u> 2)-0215, ESL-MW-C1-0215, ESL-MW-C1-0215-EB, ESL-MW-C1-F(0.2)-0215, ESL-MW-D1-0215 Trip Blank #1				
Field	Information	YES	NO	NA	
a)	Sampling dates noted?	\boxtimes			
b)	Does the laboratory narrative indicate deficiencies?	\boxtimes			
Co	mments:				
VC	OC: Sample ESL-MW-D1-0215 required dilution prior to analysis, reporting limits were adjusted a	ccording	<u>y.</u>		
<u>Di</u>	ssolved Gases: Insufficient volume to perform MS/MSD associated with batch 369468.				
Me	etals: No deficiencies noted.				
<u>Al</u>	kalinity: No deficiencies noted.				
	alysis, reporting limits were adjusted accordingly.	·D1-0215	requii	ed dilution prio	<u>or tc</u>
Ni	trate-Nitrite as Nitrogen: No deficiencies noted.				
	ulfate: Samples PM1M-0215, PM1D-0215, ESL-MW-A-0215, ESL-MW-C1-0215, and ESL-MW-Dalysis, reporting limits were adjusted accordingly.)1-0215 r	<u>equire</u>	d dilution prior	<u>to</u>
<u>TC</u>	OC: No deficiencies noted.				
DC	DC: No deficiencies noted.				
Chai	n-of-Custody (COC)	YES	NO	NA	
a)	Was the COC signed by both field and laboratory personnel?				
b)	Were samples received in good condition?	\boxtimes			
Co	mments: Samples were received at 0.5°C, outside the 4°C +/-2°C criteria.				
Gene	eral	YES	NO	NA	
a)	Were hold times met for sample analysis?				
b)	Were the correct preservatives used?	\boxtimes			
c)	Was the correct method used?	\boxtimes			
d)	Any sample dilutions noted?	\boxtimes			

Albania State				
	- 17			
		April 2015	•	140-334
	/	Δητιί 2015	• • • • • • • • • • • • • • • • • • • •	1/10-33/4
	(in the last of th	April 2013	2	170-337
	What	•		

Co	mments: Detections in diluted analysis were qualified.							
GC/MS Instrument Performance Check (IPC) and Internal Standards (IS) YES NO NA								
a)	IPC analyzed at the appropriate frequency and met the appropriate standards?	\boxtimes						
b)	Does BFB meet the ion abundance criteria?	\boxtimes						
c)	Internal Standard retention times and areas met appropriate criteria?	\boxtimes						
Comments: None								
Calib	rations	YES	NO	NA				
a)	Initial calibration analyzed at the appropriate frequency and met the appropriate standards?	\boxtimes						
b)	Continuing calibrations analyzed at the appropriate frequency and met the appropriate standards	s?						
		\boxtimes						
c)	Initial calibration verifications and blanks analyzed at the appropriate frequency and met the app	ropriate	stand	ards?				
		\boxtimes						
d)	d) Continuing calibration verifications and blanks analyzed at the appropriate frequency and met the appropriate standards							
Со	mments: Analytes of interest met calibration standards.	\boxtimes						
Blan	ks	YES	NO	NA				
a)	Were blanks (trip, equipment, method) performed at required frequency?	\boxtimes						
b)	Were analytes detected in any blanks?							
Comments: Equipment blank ESL-MW-C1-0215-EB was submitted with SDG KPS135.								
Matri	x Spike/Matrix Spike Duplicate (MS/MSD)	YES	NO	NA				
a)	Was MS/MSD accuracy criteria met?	\boxtimes						
b)	Was MS/MSD precision criteria met?	\boxtimes						
Comments: None								
Labo	ratory Control Sample (LCS)	YES	NO	NA				
a)	LCS analyzed at the appropriate frequency and met appropriate standards?	\boxtimes						
Co	mments: None							
Surro	ogate (System Monitoring) Compounds	YES	NO	NA				
a)	Surrogate compounds analyzed at the appropriate frequency and met appropriate standards?	\boxtimes						
Con	nments: None							
Duplicates		YES	NO	NA				
a)	Were field duplicates collected?	\boxtimes						
b)	Was field duplicate precision criteria met?	\boxtimes						
Comments: Duplicate sample PM1D-0215-AD was submitted with SDG KPS135.								

Additional Comments: None

Qualifications:

Quality Control Issue	Compound(s)	Qualifier	Samples Affected
Compounds analyzed at a dilution	Benzene, Chlorobenzene, 1,4- Dichlorobenzene, Chloride, and Sulfate	D	PM1M, PM1D, ESL-MW-A, ESL-MW-C1, and ESL-MW-D1

SDG KPS135

Sample Results from:

PM1D PM1M ESL-MW-A ESL-MW-C1 ESL-MW-D1

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories. Inc. TestAmerica Savannah 5102 LaRoche Avenue Savannah, GA 31404 Tel: (912)354-7858

TestAmerica Job ID: 680-109553-1

TestAmerica Sample Delivery Group: KPS135

Client Project/Site: 1Q15 LTM GW Sampling - 1403345

For:

Solutia Inc. 575 Maryville Centre Dr. Saint Louis, Missouri 63141

Attn: Mr. Jerry Rinaldi

Michele RKISEY

Authorized for release by: 2/25/2015 2:26:24 PM

Michele Kersey, Project Manager I (912)354-7858

michele.kersey@testamericainc.com

..... Links

Review your project results through **Total Access**

Visit us at: www.testamericainc.com

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

2

Table of Contents

Cover Page	1
Table of Contents	2
Definitions	3
Case Narrative	4
Detection Summary	6
Client Sample Results	
Surrogate Summary	22
QC Sample Results	23
QC Association	31
Chronicle	34
Certification Summary	38
Method Summary	40
Sample Summary	41
Chain of Custody	42
Receipt Checklists	44

Definitions/Glossary

Client: Solutia Inc.

TEQ

Toxicity Equivalent Quotient (Dioxin)

Project/Site: 1Q15 LTM GW Sampling - 1403345

TestAmerica Job ID: 680-109553-1

SDG: KPS135

Qualifiers	
GC/MS VOA	
Qualifier	Qualifier Description
U	Indicates the analyte was analyzed for but not detected.
GC VOA	
Qualifier	Qualifier Description
U	Indicates the analyte was analyzed for but not detected.
Metals	
Qualifier	Qualifier Description
U	Indicates the analyte was analyzed for but not detected.
General Chen	nistry
Qualifier	Qualifier Description
U	Indicates the analyte was analyzed for but not detected.
Glossary	
Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CNF	Contains no Free Liquid
DER	Duplicate error ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision level concentration
MDA	Minimum detectable activity
EDL	Estimated Detection Limit
MDC	Minimum detectable concentration
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
NC	Not Calculated
ND	Not detected at the reporting limit (or MDL or EDL if shown)
PQL	Practical Quantitation Limit
QC	Quality Control
RER	Relative error ratio
RL	Reporting Limit or Requested Limit (Radiochemistry)
RPD	Relative Percent Difference, a measure of the relative difference between two points
TEF	Toxicity Equivalent Factor (Dioxin)

Case Narrative

Client: Solutia Inc.

Project/Site: 1Q15 LTM GW Sampling - 1403345

TestAmerica Job ID: 680-109553-1

SDG: KPS135

Job ID: 680-109553-1

Laboratory: TestAmerica Savannah

Narrative

Client: Solutia Inc.

Project: 1Q15 LTM GW Sampling - 1403345

Report Number: 680-109553-1

With the exceptions noted as flags or footnotes, standard analytical protocols were followed in the analysis of the samples and no problems were encountered or anomalies observed. In addition all laboratory quality control samples were within established control limits, with any exceptions noted below. Each sample was analyzed to achieve the lowest possible reporting limit within the constraints of the method. In the event of interference or analytes present at high concentrations, samples may be diluted. For diluted samples, the reporting limits are adjusted relative to the dilution required.

RECEIPT

The samples were received on 2/3/2015 9:28 AM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperatures of the 2 coolers at receipt time were 0.5° C and 2.5° C.

VOLATILE ORGANIC COMPOUNDS (GC-MS)

Samples PM1D-0215 (680-109553-1), PM1D-0215-AD (680-109553-3), PM1M-0215 (680-109553-4), ESL-MW-D1-0215 (680-109553-6), ESL-MW-C1-0215 (680-109553-8), ESL-MW-C1-0215-EB (680-109553-10), ESL-MW-A-0215 (680-109553-11) and 1Q15 LTM Trip Blank #1 (680-109553-13) were analyzed for Volatile Organic Compounds (GC-MS) in accordance with EPA SW-846 Method 8260B. The samples were analyzed on 02/10/2015 and 02/11/2015.

Sample ESL-MW-D1-0215 (680-109553-6)[10X] required dilution prior to analysis. The reporting limits have been adjusted accordingly.

No analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

DISSOLVED GASES

Samples PM1D-0215 (680-109553-1), PM1M-0215 (680-109553-4), ESL-MW-D1-0215 (680-109553-6), ESL-MW-C1-0215 (680-109553-8) and ESL-MW-A-0215 (680-109553-11) were analyzed for dissolved gases in accordance with RSK-175. The samples were analyzed on 02/04/2015.

Insufficient sample volume was available to perform a matrix spike/matrix spike duplicate (MS/MSD) associated with batch 369468.

No analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

METALS (ICP)

Samples PM1D-F(0.2)-0215 (680-109553-2), PM1M-F(0.2)-0215 (680-109553-5), ESL-MW-D1-F(0.2)-0215 (680-109553-7), ESL-MW-C1-F(0.2)-0215 (680-109553-9) and ESL-MW-A-F(0.2)-0215 (680-109553-12) were analyzed for Metals (ICP) in accordance with EPA SW-846 Method 6010C. The samples were prepared on 02/09/2015 and analyzed on 02/11/2015.

No analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

METALS (ICP)

Samples PM1D-0215 (680-109553-1), PM1M-0215 (680-109553-4), ESL-MW-D1-0215 (680-109553-6), ESL-MW-C1-0215 (680-109553-8) and ESL-MW-A-0215 (680-109553-11) were analyzed for Metals (ICP) in accordance with EPA SW-846 Method 6010C. The samples were prepared on 02/04/2015 and analyzed on 02/05/2015.

No analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

4

Case Narrative

Client: Solutia Inc.

Project/Site: 1Q15 LTM GW Sampling - 1403345

TestAmerica Job ID: 680-109553-1

SDG: KPS135

Job ID: 680-109553-1 (Continued)

Laboratory: TestAmerica Savannah (Continued)

ALKALINITY

Samples PM1D-0215 (680-109553-1), PM1M-0215 (680-109553-4), ESL-MW-D1-0215 (680-109553-6), ESL-MW-C1-0215 (680-109553-8) and ESL-MW-A-0215 (680-109553-11) were analyzed for alkalinity in accordance with EPA Method 310.1. The samples were analyzed on 02/03/2015.

No analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

CHLORIDE

Samples PM1D-0215 (680-109553-1), PM1M-0215 (680-109553-4), ESL-MW-D1-0215 (680-109553-6), ESL-MW-C1-0215 (680-109553-8) and ESL-MW-A-0215 (680-109553-11) were analyzed for Chloride in accordance with EPA Method 325.2. The samples were analyzed on 02/11/2015.

Samples PM1D-0215 (680-109553-1)[2X], PM1M-0215 (680-109553-4)[10X], ESL-MW-D1-0215 (680-109553-6)[5X], ESL-MW-C1-0215 (680-109553-8)[5X] and ESL-MW-A-0215 (680-109553-11)[2X] required dilution prior to analysis. The reporting limits have been adjusted accordingly.

No analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

NITRATE-NITRITE AS NITROGEN

Samples PM1D-0215 (680-109553-1), PM1M-0215 (680-109553-4), ESL-MW-D1-0215 (680-109553-6), ESL-MW-C1-0215 (680-109553-8) and ESL-MW-A-0215 (680-109553-11) were analyzed for nitrate-nitrite as nitrogen in accordance with EPA Method 353.2. The samples were analyzed on 02/03/2015.

No analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

SULFATE

Samples PM1D-0215 (680-109553-1), PM1M-0215 (680-109553-4), ESL-MW-D1-0215 (680-109553-6), ESL-MW-C1-0215 (680-109553-8) and ESL-MW-A-0215 (680-109553-11) were analyzed for sulfate in accordance with EPA Method 375.4. The samples were analyzed on 02/11/2015.

Samples PM1D-0215 (680-109553-1)[10X], PM1M-0215 (680-109553-4)[5X], ESL-MW-D1-0215 (680-109553-6)[20X], ESL-MW-C1-0215 (680-109553-8)[50X] and ESL-MW-A-0215 (680-109553-11)[20X] required dilution prior to analysis. The reporting limits have been adjusted accordingly.

No analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

TOTAL ORGANIC CARBON

Samples PM1D-0215 (680-109553-1), PM1M-0215 (680-109553-4), ESL-MW-D1-0215 (680-109553-6), ESL-MW-C1-0215 (680-109553-8) and ESL-MW-A-0215 (680-109553-11) were analyzed for total organic carbon in accordance with EPA Method 415.1. The samples were analyzed on 02/24/2015.

No analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

DISSOLVED ORGANIC CARBON (DOC)

Samples PM1D-F(0.2)-0215 (680-109553-2), PM1M-F(0.2)-0215 (680-109553-5), ESL-MW-D1-F(0.2)-0215 (680-109553-7), ESL-MW-C1-F(0.2)-0215 (680-109553-9) and ESL-MW-A-F(0.2)-0215 (680-109553-12) were analyzed for Dissolved Organic Carbon (DOC) in accordance with EPA Method 415.1. The samples were analyzed on 02/24/2015.

No analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

4

5

3.5

18

Detection Summary

Client: Solutia Inc.

Project/Site: 1Q15 LTM GW Sampling - 1403345

TestAmerica Job ID: 680-109553-1

SDG: KPS135

						Ld	D.	Julipio ID.	680-109553-
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Chlorobenzene	27		1.0		ug/L	1		8260B	Total/NA
Methane	29		0.58		ug/L	1		RSK-175	Total/NA
Iron	15		0.050		mg/L	1		6010C	Total
									Recoverable
Manganese	0.52		0.010		mg/L	1		6010C	Total
Chloride	81								Recoverable
Sulfate	320		2.0		mg/L	2		325.2	Total/NA
Total Organic Carbon	2.0		50		mg/L	10		375.4	Total/NA
-			1.0		mg/L	1		415.1	Total/NA
Analyte		Qualifier	RL	RL	Unit	Dil Fac	D	Method	Prep Type
Alkalinity	330		5.0		mg/L	1		310.1	Total/NA
Carbon Dioxide, Free	33		5.0		mg/L	1		310.1	Total/NA
Client Sample ID: PM1D-F(0.2)-0215					La	b S	Sample ID:	680-109553-2
Analyte	Result	Qualifier	RL	MDI	Unit	Dil Fac	D	Method	Dron Tune
Iron, Dissolved	15	-	0.050	- INDL	mg/L	1	_	6010C	Prep Type Dissolved
Manganese, Dissolved	0.50		0.010		mg/L	1		6010C	Dissolved
Dissolved Organic Carbon	2.1		1.0		mg/L	1		415.1	
			1.0		mg/L	'		415.1	Dissolved
Client Sample ID: PM1D-02	:15-AD					La	b S	Sample ID:	680-109553-3
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Chlorobenzene	27		10		/1	1		8260B	T. (1014
			1.0	****	ug/L		h C		Total/NA
Client Sample ID: PM1M-02	215	Qualifier	RL	MDL	Unit				680-109553-4
Client Sample ID: PM1M-02	215	Qualifier		MDL		Lal		Sample ID:	680-109553-4 Prep Type
Client Sample ID: PM1M-02	215 Result	Qualifier	RL	MDL	Unit	Lal Dil Fac		Sample ID:	Prep Type Total/NA Total
Client Sample ID: PM1M-02 Analyte Methane Iron	215 Result 15	Qualifier	RL 0.58 0.050	MDL	Unit ug/L mg/L	Lal Dil Fac		Method RSK-175 6010C	Prep Type Total/NA Total Recoverable
Client Sample ID: PM1M-02 Analyte Methane Iron Manganese	Result 15 2.7	Qualifier	RL 0.58	MDL	Unit ug/L	Lal Dil Fac		Method RSK-175	Prep Type Total/NA Total Recoverable Total
Client Sample ID: PM1M-02 Analyte Methane Iron	Result 15 2.7	Qualifier	RL 0.58 0.050	MDL	Unit ug/L mg/L	Lal Dil Fac		Method RSK-175 6010C	Prep Type Total/NA Total Recoverable
Client Sample ID: PM1M-02 Analyte Methane Iron Manganese	Result 15 2.7 2.2	Qualifier	RL 0.58 0.050	MDL	Unit ug/L mg/L mg/L	Lal Dil Fac 1 1		Method RSK-175 6010C	Prep Type Total/NA Total Recoverable Total Recoverable Recoverable
Analyte Methane Iron Manganese Chloride Sulfate	Result 15 2.7 2.2 410	Qualifier	RL 0.58 0.050 0.010	MDL	Unit ug/L mg/L mg/L	Dil Fac 1 1 1 10		Method RSK-175 6010C 6010C	Prep Type Total/NA Total Recoverable Total Recoverable Total Recoverable Total/NA
Analyte Methane Iron Manganese Chloride Sulfate Total Organic Carbon	215 Result 15 2.7 2.2 410 150 4.7	Qualifier	RL 0.58 0.050 0.010		Unit ug/L mg/L mg/L mg/L	Lal Dil Fac 1 1 10 5 1	D	Method RSK-175 6010C 6010C 325.2 375.4 415.1	Prep Type Total/NA Total Recoverable Total/NA Total Recoverable Total/NA Total/NA Total/NA
Client Sample ID: PM1M-02 Analyte Methane Iron Manganese Chloride	215 Result 15 2.7 2.2 410 150 4.7		RL 0.58 0.050 0.010 10 25 1.0		Unit ug/L mg/L mg/L mg/L mg/L mg/L mg/L Unit	Lal Dil Fac 1 1 1 10 5 1 Dil Fac	D	Method RSK-175 6010C 6010C 325.2 375.4 415.1 Method	Prep Type Total/NA Total Recoverable Total/NA Total Recoverable Total/NA Total/NA Total/NA Total/NA
Analyte Methane Iron Manganese Chloride Sulfate Total Organic Carbon Analyte	215 Result 15 2.7 2.2 410 150 4.7 Result		RL 0.58 0.050 0.010 10 25 1.0		Unit ug/L mg/L mg/L mg/L mg/L mg/L mg/L	Lal Dil Fac 1 1 10 5 1	D	Method RSK-175 6010C 6010C 325.2 375.4 415.1	Prep Type Total/NA Total Recoverable Total/NA Total Recoverable Total/NA Total/NA Total/NA
Analyte Methane Iron Manganese Chloride Sulfate Total Organic Carbon Analyte Alkalinity Carbon Dioxide, Free	215 Result 15 2.7 2.2 410 150 4.7 Result 470 87		RL 0.58 0.050 0.010 10 25 1.0 RL 5.0		Unit ug/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L m	Lal Dil Fac 1 1 1 10 5 1 Dil Fac	D	Method RSK-175 6010C 6010C 325.2 375.4 415.1 Method 310.1	Prep Type Total/NA Total Recoverable Total/NA Total/NA Total/NA Total/NA Total/NA Total/NA Total/NA Total/NA Total/NA Total/NA Total/NA
Analyte Methane Iron Manganese Chloride Sulfate Total Organic Carbon Analyte Alkalinity Carbon Dioxide, Free	Result 15 2.7 2.2 410 150 4.7 Result 470 87	Qualifier	RL 0.58 0.050 0.010 10 25 1.0 RL 5.0	RL	Unit ug/L mg/L mg/L mg/L mg/L mg/L mg/L unit mg/L mg/L	Lal Dil Fac 1 1 1 10 5 1 Dil Fac 1 Lal	D D S	Method RSK-175 6010C 6010C 325.2 375.4 415.1 Method 310.1 310.1	Prep Type Total/NA Total Recoverable Total/NA Total/NA Total/NA Total/NA Total/NA Total/NA Prep Type Total/NA Total/NA Total/NA
Analyte Methane Iron Manganese Chloride Sulfate Total Organic Carbon Analyte Alkalinity Carbon Dioxide, Free Client Sample ID: PM1M-F(Analyte	Result 15 2.7 2.2 410 150 4.7 Result 470 87 0.2)-0215 Result		RL 0.58 0.050 0.010 10 25 1.0 RL 5.0 5.0		Unit ug/L mg/L mg/L mg/L mg/L mg/L Unit mg/L Unit	Lal Dil Fac 1 1 10 5 1 Dil Fac 1 Lal	D D S	Method RSK-175 6010C 6010C 325.2 375.4 415.1 Method 310.1 310.1 Method	Prep Type Total/NA Total Recoverable Total/NA Total/NA Total/NA Total/NA Total/NA Total/NA Prep Type Total/NA Total/NA Prep Type Total/NA Total/NA
Analyte Methane Iron Manganese Chloride Sulfate Total Organic Carbon Analyte Alkalinity Carbon Dioxide, Free Client Sample ID: PM1M-F(Analyte Iron, Dissolved	Result 15 2.7 2.2 410 150 4.7 Result 470 87 0.2)-0215 Result 2.4	Qualifier	RL 0.58 0.050 0.010 10 25 1.0 RL 5.0 5.0	RL	Unit ug/L mg/L mg/L mg/L mg/L mg/L Unit mg/L mg/L	Lal Dil Fac 1 10 5 1 Dil Fac 1 Lal Dil Fac	D D S	Method RSK-175 6010C 6010C 325.2 375.4 415.1 Method 310.1 310.1 Method 6010C	Prep Type Total/NA Total Recoverable Total/NA Total/NA Total/NA Total/NA Total/NA Prep Type Total/NA Total/NA Prep Type Total/NA Total/NA Total/NA Total/NA Total/NA
Analyte Methane Iron Manganese Chloride Sulfate Total Organic Carbon Analyte Alkalinity Carbon Dioxide, Free Client Sample ID: PM1M-F(Analyte Iron, Dissolved Manganese, Dissolved	Result 15 2.7 2.2 410 150 4.7 Result 470 87 0.2)-0215 Result	Qualifier	RL 0.58 0.050 0.010 10 25 1.0 RL 5.0 5.0	RL	Unit ug/L mg/L mg/L mg/L mg/L mg/L Unit mg/L Unit	Lal Dil Fac 1 1 10 5 1 Dil Fac 1 Lal	D D S	Method RSK-175 6010C 6010C 325.2 375.4 415.1 Method 310.1 310.1 Method	Prep Type Total/NA Total Recoverable Total/NA Total/NA Total/NA Total/NA Total/NA Total/NA Prep Type Total/NA Total/NA Prep Type Total/NA Total/NA
Analyte Methane Iron Manganese Chloride Sulfate Total Organic Carbon Analyte Alkalinity Carbon Dioxide, Free Client Sample ID: PM1M-F(Analyte Iron, Dissolved Manganese, Dissolved Dissolved Organic Carbon	Result 15 2.7 2.2 410 150 4.7 Result 470 87 0.2)-0215 Result 2.4 2.1 3.0	Qualifier	RL 0.58 0.050 0.010 10 25 1.0 RL 5.0 5.0 5.0	RL	Unit ug/L mg/L mg/L mg/L mg/L mg/L unit mg/L mg/L mg/L mg/L	Lal Dil Fac 1 1 1 10 5 1 Dil Fac 1 1 Lal Dil Fac 1 1 1	D D S	Method RSK-175 6010C 6010C 325.2 375.4 415.1 Method 310.1 310.1 Method 6010C 6010C 6010C 415.1	Prep Type Total/NA Total Recoverable Total/NA Total/NA Total/NA Total/NA Total/NA Prep Type Total/NA Total/NA Prep Type Total/NA Total/NA Total/NA Total/NA Total/NA Total/NA Total/NA Total/NA
Analyte Methane Iron Manganese Chloride Sulfate Total Organic Carbon Analyte Alkalinity Carbon Dioxide, Free Client Sample ID: PM1M-F(Analyte Iron, Dissolved Manganese, Dissolved Dissolved Organic Carbon Client Sample ID: ESL-MW-	Result 15 2.7 2.2 410 150 4.7 Result 470 87 0.2)-0215 Result 2.4 2.1 3.0	Qualifier	RL 0.58 0.050 0.010 10 25 1.0 RL 5.0 5.0 RL 0.050 0.010 1.0	RL MDL	Unit ug/L mg/L mg/L mg/L mg/L mg/L unit mg/L mg/L mg/L mg/L	Lal Dil Fac 1 1 10 5 1 Dil Fac 1 1 Lal Dil Fac 1 1 Lal Lal Lal Lal	D D S	Method RSK-175 6010C 6010C 325.2 375.4 415.1 Method 310.1 310.1 Method 6010C 6010C 415.1 ample ID:	Prep Type Total/NA Total Recoverable Total/NA Total/NA Total/NA Total/NA Total/NA Total/NA Prep Type Total/NA Total/NA Total/NA Total/NA Total/NA Total/NA Total/NA Total/NA Total/NA Total/NA Total/NA Total/NA
Analyte Methane Iron Manganese Chloride Sulfate Total Organic Carbon Analyte Alkalinity Carbon Dioxide, Free Client Sample ID: PM1M-F(Analyte	Result 15 2.7 2.2 410 150 4.7 Result 470 87 0.2)-0215 Result 2.4 2.1 3.0	Qualifier	RL 0.58 0.050 0.010 10 25 1.0 RL 5.0 5.0 5.0	RL MDL	Unit ug/L mg/L mg/L mg/L mg/L mg/L unit mg/L mg/L mg/L mg/L	Lal Dil Fac 1 1 1 10 5 1 Dil Fac 1 1 Lal Dil Fac 1 1 1	D D S	Method RSK-175 6010C 6010C 325.2 375.4 415.1 Method 310.1 310.1 Method 6010C 6010C 6010C 415.1	Prep Type Total/NA Total Recoverable Total/NA Total/NA Total/NA Total/NA Total/NA Prep Type Total/NA Total/NA Prep Type Total/NA Total/NA Total/NA Total/NA Total/NA Total/NA Total/NA Total/NA

This Detection Summary does not include radiochemical test results.

TestAmerica Savannah LAB 3/5/15 Client: Solutia Inc.

Project/Site: 1Q15 LTM GW Sampling - 1403345

TestAmerica Job ID: 680-109553-1

SDG: KPS135

Client Sample	ID:	ESL-MW-D1-0215 (Continued)
---------------	-----	----------------------------

Lab	Sam	ple	ID:	680-1	09553-6
-----	-----	-----	-----	-------	---------

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Chlorobenzene	1600		10		ug/L	10	_	8260B	Total/NA
1,4-Dichlorobenzene	55		10		ug/L	10		8260B	Total/NA
Methane	75		0.58		ug/L	1		RSK-175	Total/NA
Iron	13		0.050		mg/L	1		6010C	Total
Manganese	0.39		0.010		mg/L	1		6010C	Recoverable Total Recoverable
Chloride	120		5.0		mg/L	5		325.2	Total/NA
Sulfate	540		100		mg/L	20		375.4	Total/NA
Total Organic Carbon	3.0		1.0		mg/L	1		415.1	Total/NA
Analyte	Result	Qualifier	RL	RL	Unit	Dil Fac	D	Method	Prep Type
Alkalinity	330		5.0		mg/L	1	_	310.1	Total/NA
Carbon Dioxide, Free	32		5.0		mg/L	1		310.1	Total/NA

Client Sample ID: ESL-MW-D1-F(0.2)-0215

Lab Sample ID: 680-109553-7

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac D	Method	Prep Type
Iron, Dissolved	13	0.050	mg/L	1	6010C	Dissolved
Manganese, Dissolved	0.39	0.010	mg/L	1	6010C	Dissolved
Dissolved Organic Carbon	3.4	1.0	mg/L	1	415.1	Dissolved

Client Sample ID: ESL-MW-C1-0215

Lab Sample ID: 680-109553-8

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Chlorobenzene	1.2		1.0		ug/L	1	_	8260B	Total/NA
1,2-Dichlorobenzene	1.4		1.0		ug/L	1		8260B	Total/NA
1,4-Dichlorobenzene	1.3		1.0		ug/L	1		8260B	Total/NA
Methane	3.1		0.58		ug/L	1		RSK-175	Total/NA
Iron	11		0.050		mg/L	1		6010C	Total
Manganese	0.42		0.010		mg/L	1		6010C	Recoverable Total Recoverable
Chloride	110		5.0		mg/L	5		325.2	Total/NA
Sulfate	790		250		mg/L	50		375.4	Total/NA
Total Organic Carbon	4.2		1.0		mg/L	1		415.1	Total/NA
Analyte	Result	Qualifier	RL	RL	Unit	Dil Fac	D	Method	Prep Type
Alkalinity	350		5.0		mg/L	1	_	310.1	Total/NA
Carbon Dioxide, Free	31		5.0		mg/L	1		310.1	Total/NA

Client Sample ID: ESL-MW-C1-F(0.2)-0215

Lab Sample ID: 680-109553-9

r									
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Iron, Dissolved	11		0.050		mg/L	1		6010C	Dissolved
Manganese, Dissolved	0.41		0.010		mg/L	1		6010C	Dissolved
Dissolved Organic Carbon	4.0		1.0		mg/L	1		415.1	Dissolved

Client Sample ID: ESL-MW-C1-0215-EB

Lab Sample ID: 680-109553-10

No Detections.

This Detection Summary does not include radiochemical test results.

TestAmerica Savannah LAB 3/5/15

Detection Summary

Client: Solutia Inc.

Project/Site: 1Q15 LTM GW Sampling - 1403345

TestAmerica Job ID: 680-109553-1

SDG: KPS135

Client Sample ID: ESL-MW-A-0215

Lab Sample ID: 680-109553-11

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Chlorobenzene	1.6		1.0		ug/L	1		8260B	Total/NA
1,2-Dichlorobenzene	2.2		1.0		ug/L	1		8260B	Total/NA
1,4-Dichlorobenzene	1.8		1.0		ug/L	1		8260B	Total/NA
Methane	3.5		0.58		ug/L	1		RSK-175	Total/NA
Iron	11		0.050		mg/L	1		6010C	Total
Manganese	0.37		0.010		mg/L	1		6010C	Recoverable Total Recoverable
Chloride	80		2.0		mg/L	2		325.2	Total/NA
Nitrate as N	0.33		0.050		mg/L	1		353.2	Total/NA
Sulfate	540		100		mg/L	20		375.4	Total/NA
Total Organic Carbon	3.4		1.0		mg/L	1		415.1	Total/NA
Analyte	Result	Qualifier	RL	RL	Unit	Dil Fac	D	Method	Prep Type
Alkalinity	280		5.0		mg/L	1	_	310.1	Total/NA
Carbon Dioxide, Free	25		5.0		mg/L	1		310.1	Total/NA

Client Sample ID: ESL-MW-A-F(0.2)-0215

Lab Sample ID: 680-109553-12

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac) Method	Prep Type
Iron, Dissolved	10	0.050	mg/L	1	6010C	Dissolved
Manganese, Dissolved	0.35	0.010	mg/L	1	6010C	Dissolved
Dissolved Organic Carbon	4.8	1.0	mg/L	1	415.1	Dissolved

Client Sample ID: 1Q15 LTM Trip Blank #1

Lab Sample ID: 680-109553-13

No Detections.

This Detection Summary does not include radiochemical test results.

Client: Solutia Inc.

Project/Site: 1Q15 LTM GW Sampling - 1403345

TestAmerica Job ID: 680-109553-1

SDG: KPS135

Client Sample ID: PM1D-0215

Date Collected: 02/02/15 09:30 Date Received: 02/03/15 09:28 Lab Sample ID: 680-109553-1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	1.0	U	1.0		ug/L		•	02/10/15 15:08	
Chlorobenzene	27		1.0		ug/L			02/10/15 15:08	1
1,2-Dichlorobenzene	1.0	U	1.0		ug/L			02/10/15 15:08	1
1,3-Dichlorobenzene	1.0	Ū	1.0		ug/L			02/10/15 15:08	1
1,4-Dichlorobenzene	1.0	U .	1.0		ug/L			02/10/15 15:08	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	98		70 - 130					02/10/15 15:08	
1,2-Dichloroethane-d4 (Surr)	100		70 - 130					02/10/15 15:08	1
Dibromofluoromethane (Surr)	114		70 - 130					02/10/15 15:08	
4-Bromofluorobenzene (Surr)	91		70 - 130	* * * * * * * * *				02/10/15 15:08	1
Method: RSK-175 - Dissolved	Gases (GC)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ethane	1.1	U	1.1		ug/L		• •	02/04/15 11:26	1
Ethylene	1.0	U	1.0		ug/L			02/04/15 11:26	1
Methane	29		0.58		ug/L			02/04/15 11:26	1
Method: 6010C - Metals (ICP) -	Total Recoverab	ole							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Iron	15		0.050		mg/L		02/04/15 10:52	02/05/15 05:08	1
Manganese	0.52		0.010		mg/L		02/04/15 10:52	02/05/15 05:08	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	81	D	2.0		mg/L			02/11/15 12:29	2
Nitrate as N	0.050	U	0.050		mg/L			02/03/15 16:43	1
Sulfate	320	0	50		mg/L			02/11/15 13:25	10
Total Organic Carbon	2.0		1.0		mg/L			02/24/15 12:42	1
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Alkalinity	330		5.0		mg/L			02/03/15 16:30	1
Carbon Dioxide, Free	- 33		5.0		mg/L			02/03/15 16:30	1

Client: Solutia Inc.

Project/Site: 1Q15 LTM GW Sampling - 1403345

TestAmerica Job ID: 680-109553-1

SDG: KPS135

Client Sample ID: PM1D-F(0.2)-0215

Date Collected: 02/02/15 09:30 Date Received: 02/03/15 09:28 Lab Sample ID: 680-109553-2

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Iron, Dissolved	15		0.050		mg/L		02/09/15 10:32	02/11/15 03:51	1
Manganese, Dissolved	0.50		0.010		mg/L		02/09/15 10:32	02/11/15 03:51	1
General Chemistry - Dissolved									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Dissolved Organic Carbon	2.1	-	1.0		mg/L			02/24/15 17:24	1

TestAmerica Savannah

Client: Solutia Inc.

Project/Site: 1Q15 LTM GW Sampling - 1403345

TestAmerica Job ID: 680-109553-1

SDG: KPS135

Client Sample ID: PM1D-0215-AD

Date Collected: 02/02/15 09:30 Date Received: 02/03/15 09:28

4-Bromofluorobenzene (Surr)

Lab Sample ID: 680-109553-3

02/10/15 15:29

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	1.0	U	1.0		ug/L			02/10/15 15:29	1
Chlorobenzene	27		1.0		ug/L			02/10/15 15:29	1
1,2-Dichlorobenzene	1.0	U	1.0		ug/L			02/10/15 15:29	1
1,3-Dichlorobenzene	1.0	U	1.0		ug/L			02/10/15 15:29	1
1,4-Dichlorobenzene	1.0	U	1.0		ug/L			02/10/15 15:29	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	97		70 - 130			-		02/10/15 15:29	
1,2-Dichloroethane-d4 (Surr)	102		70 - 130					02/10/15 15:29	1
Dibromofluoromethane (Surr)	111		70 - 130					02/10/15 15:29	1

70 - 130

92

6

C C

Client: Solutia Inc.

Project/Site: 1Q15 LTM GW Sampling - 1403345

TestAmerica Job ID: 680-109553-1

SDG: KPS135

Client Sample ID: PM1M-0215

Date Collected: 02/02/15 10:18 Date Received: 02/03/15 09:28 Lab Sample ID: 680-109553-4

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	1.0	U	1.0		ug/L			02/11/15 16:13	
Chlorobenzene	1.0	U	1.0		ug/L			02/11/15 16:13	
1,2-Dichlorobenzene	1.0	U	1.0		ug/L			02/11/15 16:13	
1,3-Dichlorobenzene	1.0	U	1.0		ug/L			02/11/15 16:13	1
1,4-Dichlorobenzene	1.0	U	1.0		ug/L			02/11/15 16:13	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	107		70 - 130					02/11/15 16:13	
1,2-Dichloroethane-d4 (Surr)	97		70 - 130					02/11/15 16:13	1
Dibromofluoromethane (Surr)	104		70 - 130					02/11/15 16:13	1
4-Bromofluorobenzene (Surr)	108		70 - 130					02/11/15 16:13	
Method: RSK-175 - Dissolved	Gases (GC)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ethane	1.1	U	1.1		ug/L			02/04/15 11:39	1
Ethylene	1.0	U	1.0		ug/L			02/04/15 11:39	1
Methane	15		0.58		ug/L			02/04/15 11:39	1
Method: 6010C - Metals (ICP) -	Total Recoverat	ole							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Iron	2.7		0.050		mg/L		02/04/15 10:52	02/05/15 05:03	1
Manganese	2.2		0.010		mg/L		02/04/15 10:52	02/05/15 05:03	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	410	D	10		mg/L			02/11/15 12:39	10
Nitrate as N	0.050	U	0.050		mg/L			02/03/15 16:47	1
Sulfate	150	D	25		mg/L			02/11/15 12:32	5
Total Organic Carbon	4.7	•	1.0		mg/L			02/24/15 12:57	1
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Alkalinity	470		5.0		mg/L			02/03/15 16:15	1
Carbon Dioxide, Free	87		5.0		mg/L			02/03/15 16:15	1

Client: Solutia Inc.

Project/Site: 1Q15 LTM GW Sampling - 1403345

TestAmerica Job ID: 680-109553-1

SDG: KPS135

Client Sample ID: PM1M-F(0.2)-0215

Date Collected: 02/02/15 10:18 Date Received: 02/03/15 09:28 Lab Sample ID: 680-109553-5

Method: 6010C - Metals (ICP) - Disse Analyte		Qualifier	RL	MDI	Unit	D	Dronovod	Amahaad	D
Iron, Dissolved				INDL			Prepared	Analyzed	Dil Fac
•	2.4		0.050		mg/L		02/09/15 10:32	02/11/15 03:56	1
Manganese, Dissolved	2.1		0.010		mg/L		02/09/15 10:32	02/11/15 03:56	1
General Chemistry - Dissolved									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Dissolved Organic Carbon	3.0		1.0		mg/L			02/24/15 17:39	

Client: Solutia Inc.

Project/Site: 1Q15 LTM GW Sampling - 1403345

TestAmerica Job ID: 680-109553-1

SDG: KPS135

Client Sample ID: ESL-MW-D1-0215

Date Collected: 02/02/15 11:26 Date Received: 02/03/15 09:28 Lab Sample ID: 680-109553-6

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	30	D	10		ug/L			02/11/15 18:40	10
Chlorobenzene	1600	D	10		ug/L			02/11/15 18:40	10
1,2-Dichlorobenzene	10	U	10		ug/L			02/11/15 18:40	10
1,3-Dichlorobenzene	10	U	10		ug/L			02/11/15 18:40	10
1,4-Dichlorobenzene	55	D	10		ug/L			02/11/15 18:40	10
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	109		70 - 130					02/11/15 18:40	10
1,2-Dichloroethane-d4 (Surr)	111		70 - 130					02/11/15 18:40	10
Dibromofluoromethane (Surr)	113		70 - 130					02/11/15 18:40	10
4-Bromofluorobenzene (Surr)	106		70 _ 130					02/11/15 18:40	10
Method: RSK-175 - Dissolved	Gases (GC)								
Analyte	Result	Qualifier	RL	MDL	Unit .	D	Prepared	Analyzed	Dil Fac
Ethane	1.1	U	1.1		ug/L			02/04/15 11:52	1
Ethylene	1.0	U	1.0		ug/L			02/04/15 11:52	1
Methane	75		0.58		ug/L			02/04/15 11:52	1
Method: 6010C - Metals (ICP)	- Total Recoverat	ole							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Iron	13		0.050		mg/L		02/04/15 10:52	02/05/15 05:12	1
Manganese	0.39		0.010		mg/L		02/04/15 10:52	02/05/15 05:12	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	120	D	5.0		mg/L			02/11/15 12:39	5
Nitrate as N	0.050	U	0.050		mg/L			02/03/15 16:48	1
Sulfate	540	D	100		mg/L			02/11/15 13:44	20
Total Organic Carbon	3.0		1.0		mg/L			02/24/15 13:02	1
Analyte		Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Alkalinity	330		5.0		mg/L			02/03/15 16:46	1
Carbon Dioxide, Free	32		5.0		mg/L			02/03/15 16:46	1

Client: Solutia Inc.

Project/Site: 1Q15 LTM GW Sampling - 1403345

TestAmerica Job ID: 680-109553-1

SDG: KPS135

Client Sample ID: ESL-MW-D1-F(0.2)-0215

Date Collected: 02/02/15 11:26 Date Received: 02/03/15 09:28 Lab Sample ID: 680-109553-7

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Iron, Dissolved	13		0.050		mg/L		02/09/15 10:32	02/11/15 04:10	1
Manganese, Dissolved	0.39		0.010		mg/L		02/09/15 10:32	02/11/15 04:10	1
General Chemistry - Dissolved									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Dissolved Organic Carbon	3.4		1.0		mg/L			02/24/15 17:44	1

Client: Solutia Inc.

Project/Site: 1Q15 LTM GW Sampling - 1403345

TestAmerica Job ID: 680-109553-1

SDG: KPS135

Client Sample ID: ESL-MW-C1-0215

Date Collected: 02/02/15 13:15 Date Received: 02/03/15 09:28 Lab Sample ID: 680-109553-8

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	1.0	U	1.0		ug/L			02/10/15 15:50	
Chlorobenzene	1.2		1.0		ug/L			02/10/15 15:50	
1,2-Dichlorobenzene	1.4		1.0		ug/L			02/10/15 15:50	
1,3-Dichlorobenzene	1.0	U	1.0		ug/L			02/10/15 15:50	
1,4-Dichlorobenzene	1.3		1.0		ug/L			02/10/15 15:50	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	98		70 - 130					02/10/15 15:50	
1,2-Dichloroethane-d4 (Surr)	94		70 - 130					02/10/15 15:50	1
Dibromofluoromethane (Surr)	104		70 - 130					02/10/15 15:50	1
4-Bromofluorobenzene (Surr)	93		70 - 130					02/10/15 15:50	
Method: RSK-175 - Dissolved	Gases (GC)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ethane	1.1	U	1.1		ug/L			02/04/15 12:05	1
Ethylene	1.0	U	1.0		ug/L			02/04/15 12:05	1
Methane	3.1		0.58		ug/L			02/04/15 12:05	1
Method: 6010C - Metals (ICP) -	· Total Recoverab	ole							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Iron	11		0.050		mg/L		02/04/15 10:52	02/05/15 04:31	1
Manganese	0.42		0.010		mg/L		02/04/15 10:52	02/05/15 04:31	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	110	D	5.0		mg/L			02/11/15 12:52	5
Nitrate as N	0.050	U	0.050		mg/L			02/03/15 16:49	1
Sulfate	790	D	250		mg/L			02/11/15 13:58	50
Total Organic Carbon	4.2		1.0		mg/L			02/24/15 13:07	1
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Alkalinity	350		5.0		mg/L			02/03/15 16:39	1
Carbon Dioxide, Free	31		5.0		mg/L			02/03/15 16:39	1

Client: Solutia Inc.

Project/Site: 1Q15 LTM GW Sampling - 1403345

TestAmerica Job ID: 680-109553-1

SDG: KPS135

Client Sample ID: ESL-MW-C1-F(0.2)-0215

Date Collected: 02/02/15 13:15 Date Received: 02/03/15 09:28 Lab Sample ID: 680-109553-9

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Iron, Dissolved	11		0.050		mg/L		02/09/15 10:32	02/11/15 04:15	1
Manganese, Dissolved	0.41		0.010		mg/L		02/09/15 10:32	02/11/15 04:15	1
General Chemistry - Dissolved									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Dissolved Organic Carbon	4.0		1.0		mg/L			02/24/15 17:49	1

Client: Solutia Inc.

Project/Site: 1Q15 LTM GW Sampling - 1403345

TestAmerica Job ID: 680-109553-1

SDG: KPS135

Client Sample ID: ESL-MW-C1-0215-EB

Date Collected: 02/02/15 13:30 Date Received: 02/03/15 09:28 Lab Sample ID: 680-109553-10

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	1.0	U	1.0		ug/L			02/10/15 16:11	1
Chlorobenzene	1.0	U	1.0		ug/L			02/10/15 16:11	. 1
1,2-Dichlorobenzene	1.0	U	1.0		ug/L			02/10/15 16:11	1
1,3-Dichlorobenzene	1.0	U	1.0		ug/L			02/10/15 16:11	1
1,4-Dichlorobenzene	1.0	U	1.0		ug/L			02/10/15 16:11	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	98		70 - 130			_		02/10/15 16:11	1
1,2-Dichloroethane-d4 (Surr)	100		70 - 130					02/10/15 16:11	1
Dibromofluoromethane (Surr)	104		70 - 130					02/10/15 16:11	1
4-Bromofluorobenzene (Surr)	93		70 - 130					02/10/15 16:11	1

Client: Solutia Inc.

Project/Site: 1Q15 LTM GW Sampling - 1403345

TestAmerica Job ID: 680-109553-1

SDG: KPS135

Client Sample ID: ESL-MW-A-0215

Date Collected: 02/02/15 12:20 Date Received: 02/03/15 09:28 Lab Sample ID: 680-109553-11

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Benzene	1.0	U	1.0		ug/L			02/10/15 16:32	
Chlorobenzene	1.6		1.0		ug/L			02/10/15 16:32	
1,2-Dichlorobenzene	2.2.		1.0		ug/L			02/10/15 16:32	
1,3-Dichlorobenzene	1.0	U	1.0		ug/L			02/10/15 16:32	
1,4-Dichlorobenzene	1.8		1.0		ug/L			02/10/15 16:32	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
Toluene-d8 (Surr)	105	NAME OF TAXABLE PARTY.	70 - 130					02/10/15 16:32	
1,2-Dichloroethane-d4 (Surr)	106		70 - 130					02/10/15 16:32	:
Dibromofluoromethane (Surr)	106		70 - 130					02/10/15 16:32	
4-Bromofluorobenzene (Surr)	93		70 - 130					02/10/15 16:32	
Method: RSK-175 - Dissolved	Gases (GC)								
Analyte	, ,	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ethane	1.1	U	1.1		ug/L			02/04/15 12:17	-
Ethylene	1.0	U	1.0		ug/L			02/04/15 12:17	
Methane	3.5		0.58		ug/L			02/04/15 12:17	•
Method: 6010C - Metals (ICP)	- Total Recoverab	ole							
Analyte	Result	Qualifier	RL	MDL	Unit	· D	Prepared	Analyzed	Dil Fac
Iron	11		0.050		mg/L		02/04/15 10:52	02/05/15 05:17	
Manganese	0.37		0.010		mg/L		02/04/15 10:52	02/05/15 05:17	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	80	D	2.0		mg/L			02/11/15 12:29	2
Nitrate as N	0.33		0.050		mg/L			02/03/15 16:37	1
Sulfate	540	D	100		mg/L			02/11/15 13:44	20
Total Organic Carbon	3.4		1.0		mg/L			02/24/15 13:12	1
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Alkalinity	280		5.0		mg/L			02/03/15 16:22	1
Carbon Dioxide, Free	25		5.0		mg/L			02/03/15 16:22	1

Client: Solutia Inc.

Project/Site: 1Q15 LTM GW Sampling - 1403345

TestAmerica Job ID: 680-109553-1

SDG: KPS135

Client Sample ID: ESL-MW-A-F(0.2)-0215

Date Collected: 02/02/15 12:20 Date Received: 02/03/15 09:28 Lab Sample ID: 680-109553-12

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Iron, Dissolved	10		0.050		mg/L		02/09/15 10:32	02/11/15 04:19	1
Manganese, Dissolved	0.35		0.010		mg/L		02/09/15 10:32	02/11/15 04:19	1
General Chemistry - Dissolved									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Dissolved Organic Carbon	4.8		1.0		mg/L			02/24/15 18:17	1

TestAmerica Savannah

Client: Solutia Inc.

Project/Site: 1Q15 LTM GW Sampling - 1403345

TestAmerica Job ID: 680-109553-1

SDG: KPS135

Client Sample ID: 1Q15 LTM Trip Blank #1

Date Collected: 02/02/15 00:00 Date Received: 02/03/15 09:28 Lab Sample ID: 680-109553-13

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	1.0	U	1.0		ug/L		•	02/10/15 14:47	1
Chlorobenzene	1.0	U	1.0		ug/L			02/10/15 14:47	1
1,2-Dichlorobenzene	1.0	U	1.0		ug/L			02/10/15 14:47	1
1,3-Dichlorobenzene	1.0	U	1.0		ug/L			02/10/15 14:47	1
1,4-Dichlorobenzene	1.0	U	1.0		ug/L			02/10/15 14:47	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	96		70 - 130			-		02/10/15 14:47	1
1,2-Dichloroethane-d4 (Surr)	90		70 - 130					02/10/15 14:47	1
Dibromofluoromethane (Surr)	104		70 - 130					02/10/15 14:47	1
4-Bromofluorobenzene (Surr)	88		70 - 130					02/10/15 14:47	1

Surrogate Summary

Client: Solutia Inc.

Project/Site: 1Q15 LTM GW Sampling - 1403345

TestAmerica Job ID: 680-109553-1

SDG: KPS135

Method: 8260B - Volatile Organic Compounds (GC/MS)

Matrix: Water

Prep Type: Total/NA

				Percent Sui	rrogate Reco۱	very (Acceptance Limits)
		TOL	12DCE	DBFM	BFB	
Lab Sample ID	Client Sample ID	(70-130)	(70-130)	(70-130)	(70-130)	
680-109553-1	PM1D-0215	98	100	114	91	
680-109553-3	PM1D-0215-AD	97	102	111	92	
680-109553-4	PM1M-0215	107	97	104	108	
680-109553-6	ESL-MW-D1-0215	109	111	113	106	
680-109553-8	ESL-MW-C1-0215	98	94	104	93	
680-109553-10	ESL-MW-C1-0215-EB	98	100	104	93	
680-109553-11	ESL-MW-A-0215	105	106	106	93	
680-109553-11 MS	ESL-MVV-A-0215	97	92	91	96	
680-109553-11 MSD	ESL-MW-A-0215	99	101	96	98	
680-109553-13	1Q15 LTM Trip Blank #1	96	90	104	88	
LCS 680-370271/5	Lab Control Sample	99	111	111	93	
LCS 680-370449/4	Lab Control Sample	112	102	107	103	
LCSD 680-370271/9	Lab Control Sample Dup	102	107	107	93	
LCSD 680-370449/5	Lab Control Sample Dup	106	96	100	102	
MB 680-370271/12	Method Blank	95	87	100	93	
MB 680-370449/8	Method Blank	110	98	105	105	

Surrogate Legend

TOL = Toluene-d8 (Surr)

12DCE = 1,2-Dichloroethane-d4 (Surr)

DBFM = Dibromofluoromethane (Surr)

BFB = 4-Bromofluorobenzene (Surr)

Client: Solutia Inc.

Project/Site: 1Q15 LTM GW Sampling - 1403345

TestAmerica Job ID: 680-109553-1

SDG: KPS135

Method: 8260B - Volatile Organic Compounds (GC/MS)

Lab Sample ID: MB 680-370271/12

Matrix: Water

Analysis Batch: 370271

Client Sample ID: Method Blank Prep Type: Total/NA

ME	MB							
Analyte Resul	t Qualifier	RL	MDL (Unit	D	Prepared	Analyzed	Dil Fac
Benzene 1.0	U	1.0	ι	ug/L	_		02/10/15 14:26	1
Chlorobenzene 1.0	U	1.0	ι	ug/L			02/10/15 14:26	1
1,2-Dichlorobenzene 1.0	U	1.0	ι	ug/L			02/10/15 14:26	1
1,3-Dichlorobenzene 1.0	U	1.0	ι	ug/L			02/10/15 14:26	1
1,4-Dichlorobenzene 1.0	U	1.0	ι	ug/L			02/10/15 14:26	1

MB MB Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac Toluene-d8 (Surr) 95 70 - 130 02/10/15 14:26 1,2-Dichloroethane-d4 (Surr) 87 70 - 130 02/10/15 14:26 Dibromofluoromethane (Surr) 100 70 - 130 02/10/15 14:26 4-Bromofluorobenzene (Surr) 93 70 - 130 02/10/15 14:26

Lab Sample ID: LCS 680-370271/5

Matrix: Water

Analysis Batch: 370271

Client Sample ID: Lab Control Sample Prep Type: Total/NA

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	50.0	56.9		ug/L		114	73 - 131	
Chlorobenzene	50.0	50.7		ug/L		101	80 - 120	
1,2-Dichlorobenzene	50.0	52.9		ug/L		106	80 - 120	
1,3-Dichlorobenzene	50.0	50.6		ug/L		101	80 - 120	
1,4-Dichlorobenzene	50.0	50.2		ug/L		100	80 - 120	

LCS LCS Surrogate %Recovery Qualifier Limits Toluene-d8 (Surr) 99 70 - 130 1,2-Dichloroethane-d4 (Surr) 111 70 - 130 Dibromofluoromethane (Surr) 111 70 - 130 4-Bromofluorobenzene (Surr) 93 70 - 130

Lab Sample ID: LCSD 680-370271/9

Matrix: Water

Analysis Batch: 370271

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Spi	ke LCSD	LCSD			%Rec.		RPD
Analyte Add	ed Result	Qualifier (Unit D	%Rec	Limits	RPD	Limit
Benzene 50	58.3	ī	ug/L	117	73 - 131	2	30
Chlorobenzene 50	.0 50.8	ι	ug/L	102	80 - 120	0	20
1,2-Dichlorobenzene 50	.0 52.8	ι	ug/L	106	80 - 120	0	20
1,3-Dichlorobenzene 50	.0 50.6		ug/L	101	80 - 120	0	20
1,4-Dichlorobenzene 50	.0 50.5	ι	ug/L	101	80 - 120	1	20

LCSD LCSD

Surrogate	%Recovery	Qualifier	Limits
Toluene-d8 (Surr)	102		70 - 130
1,2-Dichloroethane-d4 (Surr)	107		70 - 130
Dibromofluoromethane (Surr)	107		70 - 130
4-Bromofluorobenzene (Surr)	93		70 - 130

TestAmerica Savannah LAB 3|5|15

Client: Solutia Inc.

Project/Site: 1Q15 LTM GW Sampling - 1403345

TestAmerica Job ID: 680-109553-1

SDG: KPS135

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: 680-109553-11 MS

Matrix: Water

Analysis Batch: 370271

Client Sample ID: ESL-MW-A-0215

Prep Type: Total/NA

	Sample	Sample	Spike	MS	MS				%Rec.
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
Benzene	1.0	U	50.0	50.1		ug/L		100	73 - 131
Chlorobenzene	1.6		50.0	51.6		ug/L		100	80 - 120
1,2-Dichlorobenzene	2.2		50.0	53.5		ug/L		103	80 - 120
1,3-Dichlorobenzene	1.0	U	50.0	51.7		ug/L		103	80 - 120
1,4-Dichlorobenzene	1.8		50.0	53.5		ug/L		104	80 - 120

MS MS Surrogate %Recovery Qualifier Limits Toluene-d8 (Surr) 97 70 - 130 1,2-Dichloroethane-d4 (Surr) 92 70 - 130 Dibromofluoromethane (Surr) 91 70 - 130 4-Bromofluorobenzene (Surr) 70 - 130

Lab Sample ID: 680-109553-11 MSD

Matrix: Water

Analysis Batch: 370271

Client Sample ID: ESL-MW-A-0215

Prep Type: Total/NA

	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	1.0	U	50.0	51.7	-	ug/L		103	73 - 131	3	30
Chlorobenzene	1.6		50.0	53.5		ug/L		104	80 - 120	4	20
1,2-Dichlorobenzene	2.2		50.0	56.1		ug/L		108	80 - 120	5	20
1,3-Dichlorobenzene	1.0	U	50.0	53.4		ug/L		107	80 - 120	3	20
1,4-Dichlorobenzene	1.8		50.0	55.3		ug/L		107	80 - 120	3	20

MSD MSD Surrogate %Recovery Qualifier Limits Toluene-d8 (Surr) 70 - 130 1,2-Dichloroethane-d4 (Surr) 101 70 - 130 Dibromofluoromethane (Surr) 96 70 - 130 4-Bromofluorobenzene (Surr) 98 70 - 130

Lab Sample ID: MB 680-370449/8

Matrix: Water

Analysis Batch: 370449

Client Sample ID: Method Blank

Prep Type: Total/NA

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	1.0	U	1.0		ug/L			02/11/15 11:48	1
Chlorobenzene	1.0	U	1.0		ug/L			02/11/15 11:48	1
1,2-Dichlorobenzene	1.0	U	1.0		ug/L			02/11/15 11:48	1
1,3-Dichlorobenzene	1.0	U	1.0		ug/L			02/11/15 11:48	1
1,4-Dichlorobenzene	1.0	U	1.0		ug/L			02/11/15 11:48	1

	MB	MB				
Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	110		70 - 130		02/11/15 11:48	1
1,2-Dichloroethane-d4 (Surr)	98		70 - 130		02/11/15 11:48	. 1
Dibromofluoromethane (Surr)	105		70 - 130		02/11/15 11:48	1
4-Bromofluorobenzene (Surr)	105		70 - 130		02/11/15 11:48	1

TestAmerica Savannah CAB 3/5/15

TestAmerica Job ID: 680-109553-1

SDG: KPS135

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 680-370449/4

Matrix: Water

Analysis Batch: 370449

Client Sample ID: Lab Control Sample Prep Type: Total/NA

	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Benzene	50.0	52.7		ug/L		105	73 - 131
Chlorobenzene	50.0	49.1		ug/L		98	80 - 120
1,2-Dichlorobenzene	50.0	52.9		ug/L		106	80 - 120
1,3-Dichlorobenzene	50.0	52.3		ug/L		105	80 - 120
1,4-Dichlorobenzene	50.0	50.8		ug/L		102	80 - 120

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
Toluene-d8 (Surr)	112		70 - 130
1,2-Dichloroethane-d4 (Surr)	102		70 - 130
Dibromofluoromethane (Surr)	107		70 - 130
4-Bromofluorobenzene (Surr)	103		70 - 130

Lab Sample ID: LCSD 680-370449/5

Matrix: Water

Analysis Batch: 370449

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	50.0	50.6		ug/L		101	73 - 131	4	30
Chlorobenzene	50.0	48.3		ug/L		97	80 - 120	2	20
1,2-Dichlorobenzene	50.0	51.3		ug/L		103	80 - 120	3	20
1,3-Dichlorobenzene	50.0	51.3		ug/L		103	80 - 120	2	20
1,4-Dichlorobenzene	50.0	49.3		ug/L		99	80 - 120	3	20

LCSD LCSD

Surrogate	%Recovery	Qualifier	Limits
Toluene-d8 (Surr)	106		70 - 130
1,2-Dichloroethane-d4 (Surr)	96		70 - 130
Dibromofluoromethane (Surr)	100		70 - 130
4-Bromofluorobenzene (Surr)	102		70 - 130

Method: RSK-175 - Dissolved Gases (GC)

Lab Sample ID: MB 680-369468/7

Matrix: Water

Analysis Batch: 369468

Client Sample ID: Method Blank

Prep Type: Total/NA

	IVID	IVIB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ethane	1.1	U	1.1		ug/L			02/04/15 10:41	1
Ethylene	1.0	U	1.0		ug/L			02/04/15 10:41	1
Methane	0.58	U	0.58		ug/L			02/04/15 10:41	1

Lab Sample ID: LCS 680-369468/6

Matrix: Water

Analysis Batch: 369468

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

- 1	Time, or a material occition								
		Spike	LCS	LCS				%Rec.	
	Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
	Ethane	288	253	-	ug/L	_	88	75 - 125	 -
	Ethylene	269	234		ug/L		87	75 - 125	

TestAmerica Savannah LAB 3/5/15

TestAmerica Job ID: 680-109553-1

SDG: KPS135

Lab Sample ID: LCS 680-369468/6 Client Sample ID: Lab Control Sample Matrix: Water Prep Type: Total/NA

Analysis Batch: 369468

Spike LCS LCS %Rec. Analyte Added Result Qualifier Unit %Rec Limits Methane 154 134 ug/L 87 75 - 125

Spike

Added

288

269

154

MB MB

LCSD LCSD

267

247

148

Result Qualifier

ug/L

Lab Sample ID: LCSD 680-369468/14

Matrix: Water

Analyte

Ethane

Ethylene

Methane

Analysis Batch: 369468

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

75 - 125

%Rec. RPD Unit D %Rec Limits RPD Limit ug/L 93 75 - 1256 30 ug/L 92 75 - 125 5 30

96

Method: 6010C - Metals (ICP)

Lab Sample ID: MB 680-369516/1-A

Matrix: Water

Analysis Batch: 369692

Client Sample ID: Method Blank Prep Type: Total Recoverable

Prep Batch: 369516

10

30

Analyte Result Qualifier RL MDL Unit Prepared Analyzed Dil Fac Iron 0.050 U 0.050 mg/L 02/04/15 10:52 02/05/15 04:22 Manganese 0.010 U 0.010 mg/L 02/04/15 10:52 02/05/15 04:22

Lab Sample ID: LCS 680-369516/2-A

Matrix: Water

Analysis Batch: 369692

Client Sample ID: Lab Control Sample Prep Type: Total Recoverable

Prep Batch: 369516

Spike LCS LCS %Rec. Analyte Added Result Qualifier Unit %Rec Limits Iron 5.00 4.83 mg/L 80 - 120 Manganese 0.500 0.524 mg/L 105 80 - 120

Lab Sample ID: 680-109553-8 MS

Matrix: Water

Analysis Batch: 369692

Client Sample ID: ESL-MW-C1-0215 Prep Type: Total Recoverable

Prep Batch: 369516

Sample Sample Spike MS MS %Rec. Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits Iron 11 5.00 15.4 mg/L 90 75 - 125 Manganese 0.42 0.500 0.933 mg/L 102 75 - 125

Lab Sample ID: 680-109553-8 MSD

Matrix: Water

Analysis Batch: 369692

Client Sample ID: ESL-MW-C1-0215

Prep Type: Total Recoverable

Prep Batch: 369516

%Rec. RPD Limits RPD Limit 20

Sample Sample Spike MSD MSD Analyte Result Qualifier Added Result Qualifier Unit D %Rec Iron 11 5.00 15.3 mg/L 89 75 - 125 Manganese 0.42 0.500 0.930 mg/L 101 75 - 125 0 20

TestAmerica Savannah

TestAmerica Job ID: 680-109553-1

SDG: KPS135

Method:	6010C	- Metals	(ICP)	(Continued)

Lab Sample ID: MB 680-370112/1-A

Matrix: Water

Analysis Batch: 370470

Client Sample ID: Method Blank Prep Type: Total Recoverable

Prep Batch: 370112

1		IVID	IVID							
	Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
	Iron, Dissolved	0.050	U	0.050		mg/L		02/09/15 10:32	02/11/15 02:01	1
	Manganese, Dissolved	0.010	U	0.010		mg/L		02/09/15 10:32	02/11/15 02:01	1

MR MR

Lab Sample ID: LCS 680-370112/2-A

Matrix: Water

Analysis Batch: 370470

Client Sample ID: Lab Control Sample Prep Type: Total Recoverable Prep Batch: 370112

Spike LCS LCS %Rec. Analyte Added Result Qualifier Unit %Rec Limits Iron, Dissolved 5.00 4.82 mg/L 96 80 - 120 Manganese, Dissolved 0.500 0.513 80 - 120 mg/L 103

Method: 310.1 - Alkalinity

Lab Sample ID: MB 680-369500/25

Matrix: Water

Analysis Batch: 369500

Client Sample ID: Method Blank Prep Type: Total/NA

	IAID	IVID							
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Alkalinity	5.0	U	5.0		mg/L			02/03/15 15:52	1
Carbon Dioxide, Free	5.0	U ·	5.0		mg/L			02/03/15 15:52	1

Lab Sample ID: LCS 680-369500/26

Matrix: Water			Prep Type: Total/N
Analysis Batch: 369500			
	Spike	LCS LCS	%Rec.

Analyte Added Result Qualifier Unit %Rec Limits Alkalinity 250 214 mg/L 85 80 - 120

Lab Sample ID: LCSD 680-369500/46

Matrix: Water

Analysis Batch: 369500

Client Sample ID: Lab Control Sample Dup

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Spike LCSD LCSD %Rec. RPD Analyte Added Result Qualifier Unit %Rec D Limits RPD Limit Alkalinity 250 259 mg/L 103 80 - 120 19 30

Method: 325.2 - Chloride

Lab Sample ID: MB 680-370556/23

Matrix: Water

Analysis Batch: 370556

Client Sample ID: Method Blank

Prep Type: Total/NA

MB MB Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac Chloride 1.0 U 1.0 mg/L 02/11/15 12:39

> TestAmerica Savannah LAB 3/5/15

Spike

Added

25.0

Client: Solutia Inc.

Project/Site: 1Q15 LTM GW Sampling - 1403345

TestAmerica Job ID: 680-109553-1

SDG: KPS135

Method: 325.2 - Chloride (Continued)

Lab Sample ID: LCS 680-370556/13

Matrix: Water

Analyte

Chloride

Analysis Batch: 370556

Client Sample ID: Lab Control Sample Prep Type: Total/NA

%Rec. Unit D

%Rec Limits 103 85 - 115

Lab Sample ID: 680-109553-4 DU

Matrix: Water

Analysis Batch: 370556

Client Sample ID: PM1M-0215

Prep Type: Total/NA

Sample Sample DU DU RPD Analyte Result Qualifier Result Qualifier Unit D RPD Limit Chloride 410 415 mg/L 0.8

LCS LCS

25.8

Result Qualifier

mg/L

Method: 353.2 - Nitrogen, Nitrate-Nitrite

Lab Sample ID: MB 680-369447/13

Matrix: Water

Analysis Batch: 369447

Client Sample ID: Method Blank

Prep Type: Total/NA

мв мв Analyte Result Qualifier RL MDL Unit Prepared Analyzed Dil Fac Nitrate as N 0.050 U 0.050 mg/L 02/03/15 16:32

LCS LCS

0.552

1.07

0.519

Result Qualifier

Unit

mg/L

mg/L

mg/L

Spike

Added

0.500

1.00

0.500

Lab Sample ID: LCS 680-369447/16

Matrix: Water

Analyte

Nitrate as N

Nitrite as N

Analysis Batch: 369447

Client Sample ID: Lab Control Sample Prep Type: Total/NA

%Rec. %Rec Limits 110 75 - 125

107

104

Lab Sample ID: 680-109553-11 MS

Matrix: Water

Nitrate Nitrite as N

Analysis Batch: 369447

Client Sample ID: ESL-MW-A-0215

90 - 110

90 - 110

Prep Type: Total/NA

Sample Sample Spike MS MS %Rec. Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits Nitrate as N 0.33 0.500 0.798 mg/L 94 75 - 125 Nitrate Nitrite as N 0.34 1.00 1.30 mg/L 97 90 - 110 Nitrite as N 0.050 U 0.500 0.507 mg/L 101 90 - 110

Lab Sample ID: 680-109553-11 MSD

Matrix: Water

Analysis Batch: 369447

Client Sample ID: ESL-MW-A-0215

Prep Type: Total/NA

-	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Nitrate as N	0.33		0.500	0.804		mg/L		95	75 - 125	1	30
Nitrate Nitrite as N	0.34		1.00	1.32		mg/L		98	90 - 110	1	10
Nitrite as N	0.050	U	0.500	0.513		mg/L		103	90 - 110	1	10

TestAmerica Savannah

LAB 3/5/15

Client: Solutia Inc.

Method: 375.4 - Sulfate

Lab Sample ID: 680-109553-2 MS

Lab Sample ID: 680-109553-2 DU

Sample Sample

Sample Sample

Result Qualifier

Result Qualifier

Matrix: Water

Matrix: Water

Analyte

Analysis Batch: 175823

Dissolved Organic Carbon

Analysis Batch: 175823

Dissolved Organic Carbon

Project/Site: 1Q15 LTM GW Sampling - 1403345

TestAmerica Job ID: 680-109553-1

SDG: KPS135

Lab Sample ID: MB 680-370564/58 Matrix: Water												Client S	ample ID: N		
Analysis Batch: 370564													Prep Ty	ре: 10	tai/N
Mary old Batoll, 01 0004	1	МВ	MB												
Analyte			Qualifier		RL		MDL	Unit		D	P	repared	Analyze	d	Dil Fac
Sulfate		5.0	U		5.0			mg/L		· <u> </u>	•		02/11/15 1		Diriu
Lab Sample ID: LCS 680-370564/4										CI	ient	Sample	ID: Lab Co	ntrol S	ample
Matrix: Water													Prep Ty		
Analysis Batch: 370564															
				Spike		LCS	LCS						%Rec.		
Analyte				Added		Result	Qual	ifier	Unit		D	%Rec	Limits		
Sulfate				20.0		20.5			mg/L		_	102	75 - 125		
Lab Sample ID: 680-109553-4 DU												Clion	t Sample ID	· DM/48	# n24#
Matrix: Water												Chen	Prep Ty		
Analysis Batch: 370564													riepiy	pe. 10	talling
•	Sample S	Samp	ole			DU	DU								RPE
Analyte	Result (Quali	ifier			Result	Qual	ifier	Unit		D			RPD	Limi
Sulfate	150			· · · · · · · · · · · · · · · · · · ·		157			mg/L					2	30
/lethod: 415.1 - DOC		************								***************************************			***************************************		************************
Lab Sample ID: MB 160-175823/43				***************************************								01:4 0			
Matrix: Water												Client 5	ample ID: N		
Analysis Batch: 175823													Prep Typ	e: Diss	soived
. mary ord Batori. 170020	1	МВ	МВ												
Analyte	Res	sult	Qualifier		RL		MDL	Unit		D	P	repared	Analyze	d	Dil Fac
Dissolved Organic Carbon		1.0	U		1.0			mg/L				Toparou	02/24/15 1		1
Lab Sample ID: LCS 160-175823/44										Cli	ont	Sample	ID: Lab Co	ntral C	am n la
Matrix: Water										Oil	CIII	Jampie	Prep Typ		
Analysis Batch: 175823													riep iyp	e. Diss	sorveu
•				Spike		LCS	LCS						%Rec.		
Analyte				Added		Result		ifier	Unit		D	%Rec	Limits		

TestAmerica Savannah

LAB 3/5/15

Client Sample ID: PM1D-F(0.2)-0215

%Rec.

Limits

82 - 132

Client Sample ID: PM1D-F(0.2)-0215

%Rec

D

106

Prep Type: Dissolved

Prep Type: Dissolved

RPD

RPD

Limit

20

Spike

Added

5.00

MS MS

DU DU

2.08

Result Qualifier

7.40

Result Qualifier

Unit

mg/L

Unit

mg/L

Client: Solutia Inc.

Project/Site: 1Q15 LTM GW Sampling - 1403345

TestAmerica Job ID: 680-109553-1

SDG: KPS135

Method:	41	5.1	ess	T	OC
---------	----	-----	-----	---	----

Lab Sample ID: MB 160-175822/4

Matrix: Water

Analysis Batch: 175822

Client Sample ID: Method Blank Prep Type: Total/NA

104

мв мв

2.0

Result Qualifier RL MDL Unit Prepared Analyzed Dil Fac Total Organic Carbon 1.0 U 1.0 02/24/15 12:28 mg/L

Lab Sample ID: LCS 160-175822/5

Matrix: Water

Analyte

Analyte

Analysis Batch: 175822

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Type: Total/NA

Client Sample ID: PM1D-0215

76 - 120

Spike LCS LCS %Rec. Added Result Qualifier Unit D %Rec Limits 10.0 9.67 mg/L 90 - 110

Lab Sample ID: 680-109553-1 MS

Matrix: Water

Total Organic Carbon

Analysis Batch: 175822

Sample Sample Spike MS MS %Rec. Result Qualifier Added Result Qualifier Unit %Rec Limits

7.18

5.00

Lab Sample ID: 680-109553-1 DU

Matrix: Water

Total Organic Carbon

Analysis Batch: 175822

Client Sample ID: PM1D-0215 Prep Type: Total/NA

mg/L

Sample Sample DU DU RPD

Analyte Result Qualifier Result Qualifier Unit Limit Total Organic Carbon 2.0 1.96 mg/L 20

QC Association Summary

Client: Solutia Inc.

Project/Site: 1Q15 LTM GW Sampling - 1403345

TestAmerica Job ID: 680-109553-1

SDG: KPS135

GC/MS VOA

Analysis Batch: 3702	2/1	
----------------------	-----	--

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-109553-1	PM1D-0215	Total/NA	Water	8260B	
680-109553-3	PM1D-0215-AD	Total/NA	Water	8260B	
680-109553-8	ESL-MW-C1-0215	Total/NA	Water	8260B	
680-109553-10	ESL-MW-C1-0215-EB	Total/NA	Water	8260B	
680-109553-11	ESL-MVV-A-0215	Total/NA	Water	8260B	
680-109553-11 MS	ESL-MW-A-0215	Total/NA	Water	8260B	
680-109553-11 MSD	ESL-MW-A-0215	Total/NA	Water	8260B	
680-109553-13	1Q15 LTM Trip Blank #1	Total/NA	Water	8260B	
LCS 680-370271/5	Lab Control Sample	Total/NA	Water	8260B	
LCSD 680-370271/9	Lab Control Sample Dup	Total/NA	Water	8260B	
MB 680-370271/12	Method Blank	Total/NA	Water	8260B	

Analysis Batch: 370449

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-109553-4	PM1M-0215	Total/NA	Water	8260B	
680-109553-6	ESL-MW-D1-0215	Total/NA	Water	8260B	
LCS 680-370449/4	Lab Control Sample	Total/NA	Water	8260B	
LCSD 680-370449/5	Lab Control Sample Dup	Total/NA	Water	8260B	
MB 680-370449/8	Method Blank	Total/NA	Water	8260B	

GC VOA

Analysis Batch: 369468

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-109553-1	PM1D-0215	Total/NA	Water	RSK-175	
680-109553-4	PM1M-0215	Total/NA	Water	RSK-175	
680-109553-6	ESL-MW-D1-0215	Total/NA	Water	RSK-175	
680-109553-8	ESL-MW-C1-0215	Total/NA	Water	RSK-175	
680-109553-11	ESL-MW-A-0215	Total/NA	Water	RSK-175	
LCS 680-369468/6	Lab Control Sample	Total/NA	Water	RSK-175	
LCSD 680-369468/14	Lab Control Sample Dup	Total/NA	Water	RSK-175	
MB 680-369468/7	Method Blank	Total/NA	Water	RSK-175	

Metals

Prep Batch: 369516

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-109553-1	PM1D-0215	Total Recoverable	Water	3005A	
680-109553-4	PM1M-0215	Total Recoverable	Water	3005A	
680-109553-6	ESL-MW-D1-0215	Total Recoverable	Water	3005A	
680-109553-8	ESL-MW-C1-0215	Total Recoverable	Water	3005A	
680-109553-8 MS	ESL-MW-C1-0215	Total Recoverable	Water	3005A	
680-109553-8 MSD	ESL-MW-C1-0215	Total Recoverable	Water	3005A	
680-109553-11	ESL-MW-A-0215	Total Recoverable	Water	3005A	
LCS 680-369516/2-A	Lab Control Sample	Total Recoverable	Water	3005A	
MB 680-369516/1-A	Method Blank	Total Recoverable	Water	3005A	

Analysis Batch: 369692

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-109553-1	PM1D-0215	Total Recoverable	Water	6010C	369516

QC Association Summary

Client: Solutia Inc.

Project/Site: 1Q15 LTM GW Sampling - 1403345

TestAmerica Job ID: 680-109553-1

SDG: KPS135

Metals (Continued)

Analysis	Batch:	369692	(Continued)
----------	--------	--------	-------------

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-109553-4	PM1M-0215	Total Recoverable	Water	6010C	369516
680-109553-6	ESL-MW-D1-0215	Total Recoverable	Water	6010C	369516
680-109553-8	ESL-MW-C1-0215	Total Recoverable	Water	6010C	369516
680-109553-8 MS	ESL-MW-C1-0215	Total Recoverable	Water	6010C	369516
680-109553-8 MSD	ESL-MW-C1-0215	Total Recoverable	Water	6010C	369516
680-109553-11	ESL-MW-A-0215	Total Recoverable	Water	6010C	369516
LCS 680-369516/2-A	Lab Control Sample	Total Recoverable	Water	6010C	369516
MB 680-369516/1-A	Method Blank	Total Recoverable	Water	6010C	369516

Prep Batch: 370112

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-109553-2	PM1D-F(0.2)-0215	Dissolved	Water	3005A	
680-109553-5	PM1M-F(0.2)-0215	Dissolved	Water	3005A	
680-109553-7	ESL-MW-D1-F(0.2)-0215	Dissolved	Water	3005A	
680-109553-9	ESL-MW-C1-F(0.2)-0215	Dissolved	Water	3005A	
680-109553-12	ESL-MW-A-F(0.2)-0215	Dissolved	Water	3005A	
LCS 680-370112/2-A	Lab Control Sample	Total Recoverable	Water	3005A	
MB 680-370112/1-A	Method Blank	Total Recoverable	Water	3005A	

Analysis Batch: 370470

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-109553-2	PM1D-F(0.2)-0215	Dissolved	Water	6010C	370112
680-109553-5	PM1M-F(0.2)-0215	Dissolved	Water	6010C	370112
680-109553-7	ESL-MW-D1-F(0.2)-0215	Dissolved	Water	6010C	370112
680-109553-9	ESL-MW-C1-F(0.2)-0215	Dissolved	Water	6010C	370112
680-109553-12	ESL-MW-A-F(0.2)-0215	Dissolved	Water	6010C	370112
LCS 680-370112/2-A	Lab Control Sample	Total Recoverable	Water	6010C	370112
MB 680-370112/1-A	Method Blank	Total Recoverable	Water	6010C	370112

General Chemistry

Analysis Batch: 175822

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-109553-1	PM1D-0215	Total/NA	Water	415.1	
680-109553-1 DU	PM1D-0215	Total/NA	Water	415.1	
680-109553-1 MS	PM1D-0215	Total/NA	Water	415.1	
380-109553-4	PM1M-0215	Total/NA	Water	415.1	
680-109553-6	ESL-MW-D1-0215	Total/NA	Water	415.1	
880-109553-8	ESL-MW-C1-0215	Total/NA	Water	415.1	
680-109553-11	ESL-MW-A-0215	Total/NA	Water	415.1	
LCS 160-175822/5	Lab Control Sample	Total/NA	Water	415.1	
MB 160-175822/4	Method Blank	Total/NA	Water	415.1	

Analysis Batch: 175823

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-109553-2	PM1D-F(0.2)-0215	Dissolved	Water	415.1	
680-109553-2 DU	PM1D-F(0.2)-0215	Dissolved	Water	415.1	
680-109553-2 MS	PM1D-F(0.2)-0215	Dissolved	Water	415.1	
680-109553-5	PM1M-F(0.2)-0215	Dissolved	Water	415.1	
680-109553-7	ESL-MW-D1-F(0.2)-0215	Dissolved	Water	415.1	

TestAmerica Savannah

LAB 3/5/15

QC Association Summary

Client: Solutia Inc.

Project/Site: 1Q15 LTM GW Sampling - 1403345

TestAmerica Job ID: 680-109553-1

SDG: KPS135

General Chemistry (Continued)

Analysis Batch:	175823 ((Continued)
-----------------	----------	-------------

Lab Sample ID (Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-109553-9 E	ESL-MW-C1-F(0.2)-0215	Dissolved	Water	415.1	
680-109553-12	ESL-MW-A-F(0.2)-0215	Dissolved	Water	415.1	
LCS 160-175823/44 L	ab Control Sample	Dissolved	Water	415.1	
MB 160-175823/43	Method Blank	Dissolved	Water	415.1	

Analysis Batch: 369447

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-109553-1	PM1D-0215	Total/NA	Water	353.2	
680-109553-4	PM1M-0215	Total/NA	Water	353.2	
680-109553-6	ESL-MW-D1-0215	Total/NA	Water	353.2	
680-109553-8	ESL-MW-C1-0215	Total/NA	Water	353.2	
680-109553-11	ESL-MW-A-0215	Total/NA	Water	353.2	
680-109553-11 MS	ESL-MW-A-0215	Total/NA	Water	353.2	
680-109553-11 MSD	ESL-MW-A-0215	Total/NA	Water	353.2	
LCS 680-369447/16	Lab Control Sample	Total/NA	Water	353.2	
MB 680-369447/13	Method Blank	Total/NA	Water	353.2	

Analysis Batch: 369500

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-109553-1	PM1D-0215	Total/NA	Water	310.1	
680-109553-4	PM1M-0215	Total/NA	Water	310.1	
680-109553-6	ESL-MW-D1-0215	Total/NA	Water	310.1	
680-109553-8	ESL-MW-C1-0215	Total/NA	Water	310.1	
680-109553-11	ESL-MW-A-0215	Total/NA	Water	310.1	
LCS 680-369500/26	Lab Control Sample	Total/NA	Water	310.1	
LCSD 680-369500/46	Lab Control Sample Dup	Total/NA	Water	310.1	
MB 680-369500/25	Method Blank	Total/NA	Water	310.1	

Analysis Batch: 370556

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-109553-1	PM1D-0215	Total/NA	Water	325.2	
680-109553-4	PM1M-0215	Total/NA	Water	325.2	
680-109553-4 DU	PM1M-0215	Total/NA	Water	325.2	
680-109553-6	ESL-MW-D1-0215	Total/NA	Water	325.2	
680-109553-8	ESL-MW-C1-0215	Total/NA	Water	325.2	
680-109553-11	ESL-MW-A-0215	Total/NA	Water	325.2	
LCS 680-370556/13	Lab Control Sample	Total/NA	Water	325.2	
MB 680-370556/23	Method Blank	Total/NA	Water	325.2	

Analysis Batch: 370564

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-109553-1	PM1D-0215	Total/NA	Water	375.4	
680-109553-4	PM1M-0215	Total/NA	Water	375.4	
680-109553-4 DU	PM1M-0215	Total/NA	Water	375.4	
680-109553-6	ESL-MW-D1-0215	Total/NA	Water	375.4	
680-109553-8	ESL-MW-C1-0215	Total/NA	Water	375.4	
680-109553-11	ESL-MW-A-0215	Total/NA	Water	375.4	
LCS 680-370564/4	Lab Control Sample	Total/NA	Water	375.4	
MB 680-370564/58	Method Blank	Total/NA	Water	375.4	

Lab Chronicle

Client: Solutia Inc.

Project/Site: 1Q15 LTM GW Sampling - 1403345

TestAmerica Job ID: 680-109553-1

SDG: KPS135

Client Sample ID: PM1D-0215

Date Collected: 02/02/15 09:30 Date Received: 02/03/15 09:28 Lab Sample ID: 680-109553-1

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	370271	02/10/15 15:08	DJK	TAL SAV
Total/NA	Analysis	RSK-175		1	369468	02/04/15 11:26	AJMC	TAL SAV
Total Recoverable	Prep	3005A			369516	02/04/15 10:52	CRW	TAL SAV
Total Recoverable	Analysis	6010C		1	369692	02/05/15 05:08	BCB	TAL SAV
Total/NA	Analysis	310.1		1	369500	02/03/15 16:30	CAR	TAL SAV
Total/NA	Analysis	325.2		. 2	370556	02/11/15 12:29	JME	TAL SAV
Total/NA	Analysis	353.2		1	369447	02/03/15 16:43	GRX	TAL SAV
Total/NA	Analysis	375.4		10	370564	02/11/15 13:25	JME	TAL SAV
Total/NA	Analysis	415.1		1	175822	02/24/15 12:42	JCB	TAL SL

Client Sample ID: PM1D-F(0.2)-0215

Date Collected: 02/02/15 09:30 Date Received: 02/03/15 09:28 Lab Sample ID: 680-109553-2

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Dissolved	Prep	3005A			370112	02/09/15 10:32	CRW	TAL SAV
Dissolved	Analysis	6010C		1	370470	02/11/15 03:51	всв	TAL SAV
Dissolved	Analysis	415.1		1	175823	02/24/15 17:24	JCB	TAL SL

Client Sample ID: PM1D-0215-AD

Date Collected: 02/02/15 09:30

Date Received: 02/03/15 09:28

Lab Sample ID: 680-109553-3

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	370271	02/10/15 15:29	DJK	TAL SAV

Client Sample ID: PM1M-0215

Date Collected: 02/02/15 10:18

Date Received: 02/03/15 09:28

Lab Sample ID: 680-109553-4

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	370449	02/11/15 16:13	MMT	TAL SAV
Total/NA	Analysis	RSK-175		1	369468	02/04/15 11:39	AJMC	TAL SAV
Total Recoverable	Prep	3005A			369516	02/04/15 10:52	CRW	TAL SAV
Total Recoverable	Analysis	6010C		1	369692	02/05/15 05:03	ВСВ	TAL SAV
Total/NA	Analysis	310.1		1	369500	02/03/15 16:15	CAR	TAL SAV
Total/NA	Analysis	325.2		10	370556	02/11/15 12:39	JME	TAL SAV
Total/NA	Analysis	353.2		1	369447	02/03/15 16:47	GRX	TAL SAV
Total/NA	Analysis	375.4		5	370564	02/11/15 12:32	JME	TAL SAV
Total/NA	Analysis	415.1		1	175822	02/24/15 12:57	JCB	TAL SL

TestAmerica Savannah

LAB 3/5/15

Lab Chronicle

Client: Solutia Inc.

Project/Site: 1Q15 LTM GW Sampling - 1403345

TestAmerica Job ID: 680-109553-1

SDG: KPS135

Client Sample ID: PM1M-F(0.2)-0215

Date Collected: 02/02/15 10:18 Date Received: 02/03/15 09:28 Lab Sample ID: 680-109553-5

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Dissolved	Prep	3005A			370112	02/09/15 10:32	CRW	TAL SAV
Dissolved	Analysis	6010C		1	370470	02/11/15 03:56	всв	TAL SAV
Dissolved	Analysis	415.1		1	175823	02/24/15 17:39	JCB	TAL SL

Client Sample ID: ESL-MW-D1-0215

Date Collected: 02/02/15 11:26 Date Received: 02/03/15 09:28 Lab Sample ID: 680-109553-6

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		10	370449	02/11/15 18:40	MMT	TAL SAV
Total/NA	Analysis	RSK-175		1	369468	02/04/15 11:52	AJMC	TAL SAV
Total Recoverable	Prep	3005A			369516	02/04/15 10:52	CRW	TAL SAV
Total Recoverable	Analysis	6010C		1	369692	02/05/15 05:12	ВСВ	TAL SAV
Total/NA	Analysis	310.1		1	369500	02/03/15 16:46	CAR	TAL SAV
Total/NA	Analysis	325.2		5	370556	02/11/15 12:39	JME	TAL SAV
Total/NA	Analysis	353.2		1	369447	02/03/15 16:48	GRX	TAL SAV
Total/NA	Analysis	375.4		20	370564	02/11/15 13:44	JME	TAL SAV
Total/NA	Analysis	415.1		1	175822	02/24/15 13:02	JCB	TAL SL

Client Sample ID: ESL-MW-D1-F(0.2)-0215

Date Collected: 02/02/15 11:26 Date Received: 02/03/15 09:28 Lab Sample ID: 680-109553-7

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Dissolved	Prep	3005A			370112	02/09/15 10:32	CRW	TAL SAV
Dissolved	Analysis	6010C		1	370470	02/11/15 04:10	всв	TAL SAV
Dissolved	Analysis	415.1		1	175823	02/24/15 17:44	JCB	TAL SL

Client Sample ID: ESL-MW-C1-0215

Date Collected: 02/02/15 13:15 Date Received: 02/03/15 09:28 Lab Sample ID: 680-109553-8

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	370271	02/10/15 15:50	DJK	TAL SAV
Total/NA	Analysis	RSK-175		1	369468	02/04/15 12:05	AJMC	TAL SAV
Total Recoverable	Prep	3005A			369516	02/04/15 10:52	CRW	TAL SAV
Total Recoverable	Analysis	6010C		1	369692	02/05/15 04:31	BCB	TAL SAV
Total/NA	Analysis	310.1		1	369500	02/03/15 16:39	CAR	TAL SAV
Total/NA	Analysis	325.2		5	370556	02/11/15 12:52	JME	TAL SAV
Total/NA	Analysis	353.2		1	369447	02/03/15 16:49	GRX	TAL SAV
Total/NA	Analysis	375.4		50	370564	02/11/15 13:58	JME	TAL SAV

TestAmerica Savannah

Lab Chronicle

Client: Solutia Inc.

Project/Site: 1Q15 LTM GW Sampling - 1403345

TestAmerica Job ID: 680-109553-1

SDG: KPS135

Client Sample ID: ESL-MW-C1-0215

Date Collected: 02/02/15 13:15 Date Received: 02/03/15 09:28

Lab Sample ID: 680-109553-8

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	415.1		1	175822	02/24/15 13:07	JCB	TAL SL

Client Sample ID: ESL-MW-C1-F(0.2)-0215

Date Collected: 02/02/15 13:15

Date Received: 02/03/15 09:28

Lab Sample ID: 680-109553-9

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Dissolved	Prep	3005A			370112	02/09/15 10:32	CRW	TAL SAV
Dissolved	Analysis	6010C		1	370470	02/11/15 04:15	ВСВ	TAL SAV
Dissolved	Analysis	415.1		1	175823	02/24/15 17:49	JCB	TAL SL

Client Sample ID: ESL-MW-C1-0215-EB

Date Collected: 02/02/15 13:30 Date Received: 02/03/15 09:28

Lab Sample ID: 680-109553-10

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	370271	02/10/15 16:11	DJK	TAL SAV

Client Sample ID: ESL-MW-A-0215

Date Collected: 02/02/15 12:20 Date Received: 02/03/15 09:28

Lab Sample ID: 680-109553-11

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	370271	02/10/15 16:32	DJK	TAL SAV
Total/NA	Analysis	RSK-175		1	369468	02/04/15 12:17	AJMC	TAL SAV
Total Recoverable	Prep	3005A			369516	02/04/15 10:52	CRW	TAL SAV
Total Recoverable	Analysis	6010C		1	369692	02/05/15 05:17	всв	TAL SAV
Total/NA	Analysis	310.1		1	369500	02/03/15 16:22	CAR	TAL SAV
Total/NA	Analysis	325.2		2	370556	02/11/15 12:29	JME	TAL SAV
Total/NA	Analysis	353.2		1	369447	02/03/15 16:37	GRX	TAL SAV
Total/NA	Analysis	375.4		20	370564	02/11/15 13:44	JME	TAL SAV
Total/NA	Analysis	415.1		1	175822	02/24/15 13:12	JCB	TAL SL

Client Sample ID: ESL-MW-A-F(0.2)-0215

Date Collected: 02/02/15 12:20 Date Received: 02/03/15 09:28

Lab Sample ID: 680-109553-12

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Dissolved	Prep	3005A			370112	02/09/15 10:32	CRW	TAL SAV
Dissolved	Analysis	6010C		1	370470	02/11/15 04:19	всв	TAL SAV
Dissolved	Analysis	415.1		1	175823	02/24/15 18:17	JCB	TAL SL

TestAmerica Savannah

LAB

Lab Chronicle

Client: Solutia Inc.

Project/Site: 1Q15 LTM GW Sampling - 1403345

TestAmerica Job ID: 680-109553-1

SDG: KPS135

Client Sample ID: 1Q15 LTM Trip Blank #1

Date Collected: 02/02/15 00:00 Date Received: 02/03/15 09:28 Lab Sample ID: 680-109553-13

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	370271	02/10/15 14:47	DJK	TAL SAV

Laboratory References:

TAL SAV = TestAmerica Savannah, 5102 LaRoche Avenue, Savannah, GA 31404, TEL (912)354-7858 TAL SL = TestAmerica St. Louis, 13715 Rider Trail North, Earth City, MO 63045, TEL (314)298-8566

Certification Summary

Client: Solutia Inc.

Project/Site: 1Q15 LTM GW Sampling - 1403345

TestAmerica Job ID: 680-109553-1

SDG: KPS135

Laboratory: TestAmerica Savannah

All certifications held by this laboratory are listed. Not all certifications are applicable to this report.

Authority	Program	EPA Region	Certification ID	Expiration Date
	AFCEE		SAVLAB	
2LA	DoD ELAP		399.01	02-28-17
2LA	ISO/IEC 17025		399.01	02-28-17
labama	State Program	4	41450	06-30-15
rkansas DEQ	State Program	6	88-0692	01-31-16
alifornia	State Program	9	2939	07-31-15
olorado	State Program	8	N/A	12-31-15
onnecticut	State Program	1	PH-0161	03-31-15 *
lorida	NELAP	4	E87052	06-30-15
A Dept. of Agriculture	State Program	4	N/A	06-12-17
eorgia	State Program	4	N/A	06-30-15
eorgia	State Program	4	803	06-30-15
Guam	State Program	9	09-005r	04-16-15
·lawaii	State Program	9	N/A	06-30-15
linois	NELAP	5	200022	11-30-15
ndiana	State Program	5	N/A	06-30-15
owa	State Program	7	353	07-01-15
(entucky (DW)	State Program	4	90084	12-31-15
(entucky (UST)	State Program	4	18	06-30-15
entucky (WW)	State Program	4	90084	12-31-15
ouisiana	NELAP	6	30690	
puisiana (DW)	NELAP	6	LA150014	06-30-15
laine	State Program	1 .		12-31-15
aryland	•		GA00006	09-24-16
assachusetts	State Program	3	250	12-31-15
	State Program	1	M-GA006	06-30-15
ichigan	State Program	5	9925	06-30-15
ssissippi	State Program	4	N/A	06-30-15
ontana 	State Program	8	CERT0081	12-31-15
ebraska	State Program	7	TestAmerica-Savannah	06-30-15
ew Jersey	NELAP	2	GA769	06-30-15
ew Mexico	State Program	6	N/A	06-30-15
lew York	NELAP	2	10842	03-31-15 *
orth Carolina (DW)	State Program	4	13701	07-31-15
orth Carolina (WW/SW)	State Program	4	269	12-31-15
klahoma	State Program	6	9984	08-31-15
ennsylvania	NELAP	3	68-00474	06-30-15
uerto Rico	State Program	2	GA00006	12-31-15
outh Carolina	State Program	4	98001	06-30-15
ennessee	State Program	4	TN02961	06-30-15
exas	NELAP	6	T104704185-14-7	11-30-15
SDA	Federal	•	SAV 3-04	06-11-17
rginia	NELAP	3	460161	06-14-15
ashington	State Program	10	C805	06-10-15
est Virginia (DW)	State Program	3	9950C	12-31-15
/est Virginia DEP	State Program	3	094	06-30-15
isconsin	State Program	5	999819810	08-31-15
yoming	State Program	8	8TMS-L	06-30-15

Laboratory: TestAmerica St. Louis

All certifications held by this laboratory are listed. Not all certifications are applicable to this report.

TestAmerica Savannah

^{*} Certification renewal pending - certification considered valid.

Certification Summary

Client: Solutia Inc.

Project/Site: 1Q15 LTM GW Sampling - 1403345

TestAmerica Job ID: 680-109553-1

SDG: KPS135

Laboratory: TestAmerica St. Louis (Continued)

All certifications held by this laboratory are listed. Not all certifications are applicable to this report.

Authority	Program	EPA Region	Certification ID	Expiration Date
Alaska	State Program	10	MO00054	06-30-15
California	NELAP	9	2886	03-31-15
Connecticut	State Program	1	PH-0241	03-31-15
Florida	NELAP	4	E87689	06-30-15
Illinois	NELAP	5	200023	11-30-15
lowa	State Program	7	373	12-01-16
Kansas	NELAP	7	E-10236	03-31-15 *
Kentucky (DW)	State Program	4	90125	12-31-15
L-A-B	DoD ELAP		L2305	01-10-16
Louisiana	NELAP	6	LA150017	12-31-16
Maryland	State Program	3	310	09-30-15
Missouri	State Program	7	780	06-30-15
Nevada	State Program	9	MO000542013-1	07-31-15
New Jersey	NELAP	. 2	MO002	06-30-15
New Mexico	State Program	6		06-30-10 *
New York	NELAP	. 2	11616	03-31-15 *
North Dakota	State Program	. 8	R207	06-30-15
NRC	NRC		24-24817-01	12-31-22
Oklahoma	State Program	6	9997	08-31-15
Pennsylvania	NELAP	3	68-00540	02-28-15 *
South Carolina	State Program	4	85002001	06-30-15
Texas	NELAP	6	T104704193-13-6	07-31-15
USDA	Federal		P330-07-00122	01-09-17
Utah	NELAP	8	MO000542013-5	07-31-15
Virginia	NELAP	3	460230	06-14-15
Washington	State Program	10	C592	08-30-15
West Virginia DEP	State Program	3	381	08-31-15

^{*} Certification renewal pending - certification considered valid.

Method Summary

Client: Solutia Inc.

Project/Site: 1Q15 LTM GW Sampling - 1403345

TestAmerica Job ID: 680-109553-1

SDG: KPS135

Method	Method Description	Protocol	Laboratory
8260B	Volatile Organic Compounds (GC/MS)	SW846	TAL SAV
RSK-175	Dissolved Gases (GC)	RSK	TAL SAV
6010C	Metals (ICP)	SW846	TAL SAV
310.1	Alkalinity	MCAWW	TAL SAV
325.2	Chloride	MCAWW	TAL SAV
353.2	Nitrogen, Nitrate-Nitrite	MCAWW	TAL SAV
375.4	Sulfate	MCAWW	TAL SAV
415.1	TOC	MCAWW	TAL SL
415.1	DOC	MCAVW	TAL SL

Protocol References:

MCAWW = "Methods For Chemical Analysis Of Water And Wastes", EPA-600/4-79-020, March 1983 And Subsequent Revisions.

RSK = Sample Prep And Calculations For Dissolved Gas Analysis In Water Samples Using A GC Headspace Equilibration Technique, RSKSOP-175, Rev. 0, 8/11/94, USEPA Research Lab

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL SAV = TestAmerica Savannah, 5102 LaRoche Avenue, Savannah, GA 31404, TEL (912)354-7858 TAL SL = TestAmerica St. Louis, 13715 Rider Trail North, Earth City, MO 63045, TEL (314)298-8566

Sample Summary

Client: Solutia Inc.

Project/Site: 1Q15 LTM GW Sampling - 1403345

TestAmerica Job ID: 680-109553-1

SDG: KPS135

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
680-109553-1	PM1D-0215	Water	02/02/15 09:30	02/03/15 09:28
680-109553-2	PM1D-F(0.2)-0215	Water	02/02/15 09:30	02/03/15 09:28
680-109553-3	PM1D-0215-AD	Water	02/02/15 09:30	02/03/15 09:28
680-109553-4	PM1M-0215	Water	02/02/15 10:18	02/03/15 09:28
680-109553-5	PM1M-F(0.2)-0215	Water	02/02/15 10:18	02/03/15 09:28
680-109553-6	ESL-MW-D1-0215	Water	02/02/15 11:26	02/03/15 09:28
680-109553-7	ESL-MW-D1-F(0.2)-0215	Water	02/02/15 11:26	02/03/15 09:28
680-109553-8	ESL-MW-C1-0215	Water	02/02/15 13:15	02/03/15 09:28
680-109553-9	ESL-MW-C1-F(0.2)-0215	Water	02/02/15 13:15	02/03/15 09:28
680-109553-10	ESL-MW-C1-0215-EB	Water	02/02/15 13:30	02/03/15 09:28
680-109553-11	ESL-MW-A-0215	Water	02/02/15 12:20	02/03/15 09:28
680-109553-12	ESL-MW-A-F(0.2)-0215	Water	02/02/15 12:20	02/03/15 09:28
680-109553-13	1Q15 LTM Trip Blank #1	Water	02/02/15 00:00	02/03/15 09:28

Chain of Custody Record

TestAmerica Savannah

5102 LaRoche Avenue

	7	
	\smile	
	11	
	V	1
ø	-	
	Name of Street, or other Persons	圞
	n	闢
	W	闘
	-	
		蠿
	_	龖
	Alest .	
4		罴
	" Post	<u> </u>
æ	-	
	(J	
	M	
_	W	
Ļ		
E		

THE LEADER IN ENVIRONMENTAL TESTING Ę RCRA MO Regulatory Program: Savannah, GA 31404 phone 912.354.7858 fax

	I Ma I I I I I I I I I I I I I I I I I I	NPDES 14 RCKA Uther:		lestamerica Laboratories, Inc.
Client Contact	Project Manager: Amanda Derhake	Site Contact: Lori Bindner	Date: 2/2/15	COC No:
Golder Associates Inc.	Tel/Fax: 636-724-9191	Lab Contact: Michele Kersey	Carrier: FLALX	i of 7 COCs
820 South Main Street	Analysis Turnaround Time	<i>b</i>		Sampler:
St. Charles, MO 63301	CALENDAR DAYS WORKING DAYS	378		For Lab Use Only:
	TAT if different from Below Standard			Walk-in Client:
(636) 724-9323 FAX	2 weeks	/ Y	1001	Lab Sampling:
Project Name: 1Q15 LTM GW Sampling-1403345		() ()	09 /	
Site: Solutia WG Krummrich Facility	2 days	1.2/S	√q u	SDG No :
P O # 42447936	1 day	325 326 340 340 356 356 356		
	pe pe	iorm Mayor by A15 Cos by 82 Cos by 82 Cos by 82 Olved Colved	olved F	
Sample Identification		Perion Sydon Chic Chic Chic Chic		Sample Specific Notes:
PMID-0215	2/2/15/0930 G W HT	2221118	Permitted Anna Commension (2) The Permitted Commension (Anna Anna Anna Anna Anna Anna Anna An	
PMID- F(0.2)0215			£17	
PMID-0215-AD	2 7	×		
PM1M-0215	1018	3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3		
PMIM - F(0, 2) -02 15	<u> </u>	-	3	
ESC-MW-D1-0215	月 1126	3 1 3 2 3		
ESL-MW-DI-F(0.2)-0215			× ×	
150-MW-CI-0215	1315 14	3111323		
ESC-MW-CI-F(0.2)-0215			(3	
ESL-MW-CI - OZIS-EB	1330 3	~?		
ESL-MW-A-0215	h1 0221	3111323		
ESL-MW-A-F(0,2) -0215	1 1 1 1		680-1096	680-109553 Chain of Custody
HCl; 3=	H2S04, 4=HN03; 5=NaOH: 6= Other	4 1 1 2 1,3 3	4 33	
Possible Hazard Identification: Are any samples from a listed EPA Hazardous Waste? Please Comments Section if the lab is to dispose of the sample.	Please List any EPA Waste Codes for the sample in the	Sample Disposal (A fee may be assessed if samples are retained longer than 1 month	ssessed if samples are retained	longer than 1 month)
✓ Non-Hazard	Poison B Unknown	Return to Client	Disposal by Lab Archive for	Months
Special Instructions/QC Requirements & Comments:				
	SCIAI-089)	50.7	6,20(72)8.B.B.D	10.5/20.5%10.5/20.5%
Custody Seals Intact: Voc No.	,	Cooler Temp (°C): Ohe'd		
Dollacuiched him	215. 17 18. 4. 18. 1 21. Callond Seal INC. 4. 18. 18. 18. 18. 18. 18. 18. 18. 18. 18	Cooler remp. (cy. cool		I Nerm ID INO.

Date/Time: Company Sq J Company:

Date/Time:

Company:

Received by:

Company: ごら idシイ

slinguished by:

Relinquished by:

3/5/15

Date/Time:

Company:

Received by:

Form No. CA-C-WI-002, Rev. 4.3, dated 12/05/2013

Chain of Custody Record

TestAmerica Savannah

5102 LaRoche Avenue

7	200
()	
4	
"	38
\ J	鵩
, ,	128
20mmer	
11	
113	
w	
-	
(
-	耱
-	888
all transmit	100
Red	B
marie de	
- Per	鵩
	欄
	鵩
(\mathcal{L})	鵩
7.	羉
	200
VI J	鵩
CONTRACT	鵩
U	

THE LEADER IN ENVIRONMENTAL TESTING

TestAmerica Laboratories, Inc. Date/Time: 0928 Sample Specific Notes: Sample Disposal (A fee may be assessed if samples are retained longer than 1 month) For Lab Use Only Months Walk-in Client: ab Sampling: lob / SDG No. ਰ 0.8/28(0+)0.5 Date/Time: Date/Time: Sampler 202 Archive for Company: Company: 2/2 Disposal by Lab. Carrier: 1 2 4 1 1 2 13 3 4 3 Date: DOC by 415.1 Oissolved Fe/Mn by 6010C TOC by 415.1 \square Lab Contact: Michele Kersey Reseived in Laboratory by: Dissolved Gases by RSK 175 Site Contact: Lori Bindner Chloride by 325.2/Sulfate by 375.4 Other: Return to Client /IK/COS ph 310:1 Total Fe/Mn by 6010C Received by: Received by: RCRA OCs by 8260 M 3 5 1660 (PASSA SVOCs by 8270 5 Perform MS / MSD (Y / N) Filtered Sample (Y / N) NPDES 419312 Date/Time: # of Cont Possible Hazard Identification:
Are any samples from a listed EPA Hazardous Waste? Please List any EPA Waste Codes for the sample in the 3 **WORKTING DAYS** DW ययार Date/Time: Matrix 3 TAT if different from Below Standard Analysis Turnaround Time Project Manager: Amanda Derhake Unknown Type (C=Comp, G=Grab) Regulatory Program: 2 weeks Custody Seal No.: निपि3॥ 1 week 2 days D 1 day Tel/Fax: 636-724-9191 CALENDAR DAYS Sample Time 0271 Preservation Used: 1=1ce, 2=HGl; 3=H2SO4, 4=HNO3; 5=NaOH; 6=Other Poison B Science 2215 Sample Company: Company: Date 5 Skin Irritant Special Instructions/QC Requirements & Comments: VOC headspace upon sampling: Yes(No) Comments Section if the lab is to dispose of the sample. ટ roject Name: 1Q15 LTM GW Sampling-1403345 1915 CTM Trip Blank # ESC- MW- A-0215-MSD ESL-MW-A-0215-MS Sample Identification Phone Yes Client Contact Flammable ΕŽ Site: Solutia WG Krummrich Facility Savannah, GA 31404 phone 912.354.7858 fax 820 South Main Street St. Charles, MO 63301 Custody Seals Intact Golder Associates Inc. ✓ Non-Hazard 0 # 42447936 Relinquished by: 636) 724-9191 636) 724-9323 AB 3/5

Form No. CA-C-WI-002, Rev. 4.3, dated 12/05/2013

Login Sample Receipt Checklist

Client: Solutia Inc.

Job Number: 680-109553-1

SDG Number: KPS135

List Source: TestAmerica Savannah

Login Number: 109553

List Number: 1

Creator: Banda, Christy S

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
ls the Field Sampler's name present on COC?	N/A	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True .	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	•
Residual Chlorine Checked.	N/A	

Login Sample Receipt Checklist

Client: Solutia Inc.

Job Number: 680-109553-1

SDG Number: KPS135

List Source: TestAmerica St. Louis

List Creation: 02/05/15 02:48 PM

Login Number: 109553 List Number: 2 Creator: Clarke, Jill C

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td>	True	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	,3:1 0.5 , 2.5 °C
COC is present.	True	•
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	False	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	
Multiphasic samples are not present.	True	

True

N/A

Samples do not require splitting or compositing.

Residual Chlorine Checked.

Level IV Data Validation Summary Solutia Inc., W.G. Krummrich, Sauget, Illinois 1Q15 Long-Term Monitoring Program

Company Name: <u>Golder Associates</u> **Project Name**: <u>WGK-1Q15 LTM</u>

Reviewer: L. Bindner Laboratory: TestAmerica SDG#: KPS136

Matrix: Water

Project Manager: <u>A. Derhake</u> Project Number: <u>140-3345</u> Sample Date: February 2015

Analytical Method: VOC (8260B), SVOC (8270D), Dissolved Gases (RSK-175), Metals (6010C), Alkalinity (310.1), Chloride (325.2), Ni

Nitrogen, Nitrate-Nitrite (353.2), Sulfate (375.4), TOC (415.1), and DOC (415.1)			
Sample Names: BSA-MW-3D-0215, BSA-MW-3D-0215-EB, BSA-MW-3D-F(0.2)-0215, CPA-MW-5 and 1Q15 LTM Trip Blank #3	5D-0215, C	PA-M	W-5D-F(0.2)-0215,
Field Information	YES	NO	NA
a) Sampling dates noted?	\boxtimes		
b) Does the laboratory narrative indicate deficiencies?	\boxtimes		
Comments:			
VOC: Samples BSA-MW-3D-0215 and CPA-MW-5D-0215 required dilution prior to analysis, repoaccordingly. Insufficient volume to perform MS/MSD associated with batch 370981.	rting limits	were	<u>adjusted</u>
SVOC: Insufficient volume to perform MS/MSD associated with batch 369646 and batch 371177 recovered outside control limits for 1,4-dioxane and 4-chloroaniline associated with batch 371177 re-analyzed outside holding time with acceptable results.			
Dissolved Gases: Insufficient volume to perform MS/MSD associated with batch 369841.			
Metals: No deficiencies noted.			
Alkalinity: No deficiencies noted.			
Chloride: Samples BSA-MW-3D-0215 and CPA-MW-5D-0215 required dilution prior to analysis, accordingly.	reporting li	mits w	ere adjusted
Nitrate-Nitrite as Nitrogen: No deficiencies noted.			
Sulfate: Samples BSA-MW-3D-0215 and CPA-MW-5D-0215 required dilution prior to analysis, reaccordingly.	porting lim	its we	re adjusted
TOC: No deficiencies noted.			
DOC: No deficiencies noted.			
Chain-of-Custody (COC)	YES	NO	NA
a) Was the COC signed by both field and laboratory personnel?			
b) Were samples received in good condition?	\boxtimes		
Comments: Samples were received at 0.5°C and 0.9°C, outside the 4°C +/-2°C criteria.			

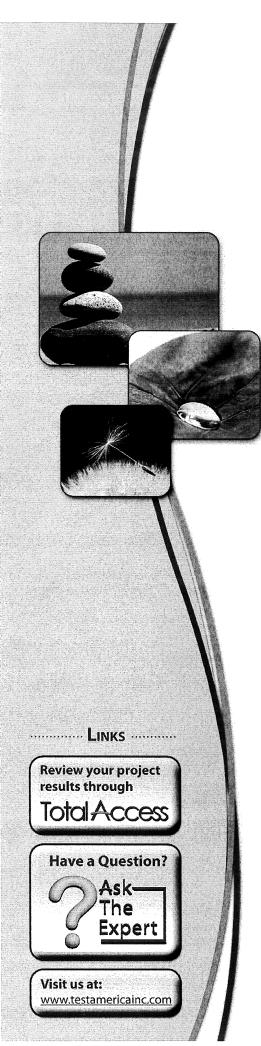
	April 2015 2			140-3345
Gene	eral	YES	NO	NA
a)	Were hold times met for sample analysis?	\boxtimes		
b)	Were the correct preservatives used?	\boxtimes		
c)	Was the correct method used?	\boxtimes		
d)	Any sample dilutions noted?	\boxtimes		
	mments: Detections in diluted analysis were qualified. SVOC samples were re-extracted and/or h acceptable limits. Samples extracted within holding time are reported.	re-analyz	<u>red ou</u>	ıtside holin
GC/N	IS Instrument Performance Check (IPC) and Internal Standards (IS)	YES	NO	NA
a)	IPC analyzed at the appropriate frequency and met the appropriate standards?	\boxtimes		
b)	Does BFB/DFTPP meet the ion abundance criteria?	\boxtimes		
c)	Internal Standard retention times and areas met appropriate criteria?	\boxtimes		
Со	mments: None			
Calib	prations	YES	NO	NA
a)	Initial calibration analyzed at the appropriate frequency and met the appropriate standards?	\boxtimes		
b)	Continuing calibrations analyzed at the appropriate frequency and met the appropriate standar	ds?		
c)	Initial calibration verifications and blanks analyzed at the appropriate frequency and met the ap	propriate	stanc	lards?
d)	Continuing calibration verifications and blanks analyzed at the appropriate frequency and met	the appro	priate	standards
_		\boxtimes		
C	omments: Analytes of interest met calibration standards.			
Blan	ıks	YES	NO	NA
a)	Were blanks (trip, equipment, method) performed at required frequency?	\boxtimes		
b)	Were analytes detected in any blanks?		\boxtimes	
Со	emments: Equipment blank BSA-MW-3D-0215-EB was submitted with SDG KPS136.			
Matri	ix Spike/Matrix Spike Duplicate (MS/MSD)	YES	NO	NA
a)	Was MS/MSD accuracy criteria met?			\boxtimes
b)	Was MS/MSD precision criteria met?			\boxtimes
Со	mments: None			
Labo	oratory Control Sample (LCS)	YES	NO	NA
a)	LCS analyzed at the appropriate frequency and met appropriate standards?		\boxtimes	
	mments: LCS/LCSD recoveries for SVOCs 2-chlorophenol and 1,4-dioxane, associated with satisfied control limits. Qualification required.	mples in S	SDG I	<u> </u>
Surro	ogate (System Monitoring) Compounds	YES	NO	NA
a)	Surrogate compounds analyzed at the appropriate frequency and met appropriate standards?		\boxtimes	
Co	mments: Surrogate recoveries for the SVOC LCS run on batch 370829 were outside control lim	nits for 2-fl	uoron	henol.
	obenzene-d5 and phenol-d5. Qualification not required.			

Dupli	cates	YES	NO	NA	
a)	Were field duplicates collected?		\boxtimes		
b)	Was field duplicate precision criteria met?				

Comments: <u>Duplicate samples were not submitted with SDG KPS136.</u>

Additional Comments: <u>None</u>

Qualifications:


Quality Control Issue	Compound(s)	Qualifier	Samples Affected
Compounds analyzed at a dilution	Benzene, Chlorobenzene, 1,4- Dichlorobenzene, Chloride, and Sulfate	D	BSA-MW-3D and CPA-MW-5D
LCS/LCSD outside control limits	4-Chloroaniline, 2-Chlorophenol, 1,2,4-Trichlorobenzene, and 1,4- Dioxane	J	BSA-MW-3D, BSA-MW-3D-EB and CPA-MW-5D
Detected at reporting limit	2-Chlorophenol	U	BSA-MW-3D

SDG KPS136

Sample Results from:

BSA-MW-3D CPA-MW-5D

<u>TestAmerica</u>

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc. TestAmerica Savannah 5102 LaRoche Avenue Savannah, GA 31404 Tel: (912)354-7858

TestAmerica Job ID: 680-109575-1

TestAmerica Sample Delivery Group: KPS136

Client Project/Site: 1Q15 LTM GW Sampling - 1403345

Revision: 1

For:

Solutia Inc. 575 Maryville Centre Dr.

Saint Louis, Missouri 63141

Attn: Mr. Jerry Rinaldi

Michele RKusey

Authorized for release by: 3/25/2015 1:25:07 PM

Michele Kersey, Project Manager I (912)354-7858

michele.kersey@testamericainc.com

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Table of Contents

Cover Page	1
Table of Contents	2
Case Narrative	3
Sample Summary	6
Method Summary	
Definitions	
Detection Summary	9
Client Sample Results	
	19
	20
	29
	32
	34
	35
	37

Case Narrative

Client: Solutia Inc.

Project/Site: 1Q15 LTM GW Sampling - 1403345

TestAmerica Job ID: 680-109575-1

SDG: KPS136

Job ID: 680-109575-1

Laboratory: TestAmerica Savannah

Narrative

CASE NARRATIVE

Client: Solutia Inc.

Project: 1Q15 LTM GW Sampling - 1403345

Report Number: 680-109575-1

With the exceptions noted as flags or footnotes, standard analytical protocols were followed in the analysis of the samples and no problems were encountered or anomalies observed. In addition all laboratory quality control samples were within established control limits, with any exceptions noted below. Each sample was analyzed to achieve the lowest possible reporting limit within the constraints of the method. In the event of interference or analytes present at high concentrations, samples may be diluted. For diluted samples, the reporting limits are adjusted relative to the dilution required.

RECEIPT

The samples were received on 2/4/2015 9:38 AM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperatures of the 2 coolers at receipt time were 0.5° C and 0.9° C.

NOTE: Revised case narrative to include cooler temp upon receipt and remove erroneous listing of sample IDs under SVOC.

VOLATILE ORGANIC COMPOUNDS (GC-MS)

Samples CPA-MW-5D-0215 (680-109575-1), BSA-MW-3D-0215 (680-109575-3), BSA-MW-3D-0215-EB (680-109575-5) and 1Q15 LTM Trip Blank #3 (680-109575-6) were analyzed for Volatile Organic Compounds (GC-MS) in accordance with EPA SW-846 Method 8260B. The samples were analyzed on 02/14/2015 and 02/15/2015.

Samples CPA-MW-5D-0215 (680-109575-1)[20X] and BSA-MW-3D-0215 (680-109575-3)[20X] required dilution prior to analysis. The reporting limits have been adjusted accordingly.

Insufficient sample volume was available to perform a matrix spike/matrix spike duplicate/sample duplicate (MS/MSD/DUP) associated with batch 370981.

No analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

SEMIVOLATILE ORGANIC COMPOUNDS (AQUEOUS)

Samples CPA-MW-5D-0215 (680-109575-1), BSA-MW-3D-0215 (680-109575-3) and BSA-MW-3D-0215-EB (680-109575-5) were analyzed for Semivolatile Organic Compounds (Aqueous) in accordance with EPA SW-846 Method 8270D. The samples were prepared on 02/05/2015 and 02/17/2015 and 02/13/2015 and 02/18/2015.

Insufficient sample volume was available to perform a matrix spike/matrix spike duplicate/sample duplicate (MS/MSD/DUP) associated with batch 369646.

Insufficient sample volume was available to perform a matrix spike/matrix spike duplicate/sample duplicate (MS/MSD/DUP) associated with batch 371177.

The %RPD of the laboratory control sample (LCS) and laboratory control standard duplicate (LCSD) for preparation batch 371177 recovered outside control limits for the following analytes: 1,4 dioxane and 4 chloroaniline.

Target recovery for the LCS/LCSD associated with the following sample(s) was outside control limits: BSA-MW-3D-0215 (680-109575-3), BSA-MW-3D-0215-EB (680-109575-5), CPA-MW-5D-0215 (680-109575-1). Re-extraction and/or re-analysis was performed outside of holding time with acceptable results.

Case Narrative

Client: Solutia Inc.

Project/Site: 1Q15 LTM GW Sampling - 1403345

TestAmerica Job ID: 680-109575-1

SDG: KPS136

Job ID: 680-109575-1 (Continued)

Laboratory: TestAmerica Savannah (Continued)

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

DISSOLVED GASES

Samples CPA-MW-5D-0215 (680-109575-1) and BSA-MW-3D-0215 (680-109575-3) were analyzed for dissolved gases in accordance with RSK-175. The samples were analyzed on 02/06/2015.

Insufficient sample volume was available to perform a matrix spike/matrix spike duplicate (MS/MSD) associated with batch 369841.

No analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

METALS (ICP)

Samples CPA-MW-5D-F(0.2)-0215 (680-109575-2) and BSA-MW-3D-F(0.2)-0215 (680-109575-4) were analyzed for Metals (ICP) in accordance with EPA SW-846 Method 6010C. The samples were prepared on 02/09/2015 and analyzed on 02/11/2015.

No analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

METALS (ICP)

Samples CPA-MW-5D-0215 (680-109575-1) and BSA-MW-3D-0215 (680-109575-3) were analyzed for Metals (ICP) in accordance with EPA SW-846 Method 6010C. The samples were prepared on 02/09/2015 and analyzed on 02/11/2015.

No analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

ALKALINITY

Samples CPA-MW-5D-0215 (680-109575-1) and BSA-MW-3D-0215 (680-109575-3) were analyzed for alkalinity in accordance with EPA Method 310.1. The samples were analyzed on 02/04/2015.

No analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

CHLORIDE

Samples CPA-MW-5D-0215 (680-109575-1) and BSA-MW-3D-0215 (680-109575-3) were analyzed for Chloride in accordance with EPA Method 325.2. The samples were analyzed on 02/11/2015.

Samples CPA-MW-5D-0215 (680-109575-1)[10X] and BSA-MW-3D-0215 (680-109575-3)[5X] required dilution prior to analysis. The reporting limits have been adjusted accordingly.

No analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

NITRATE-NITRITE AS NITROGEN

Samples CPA-MW-5D-0215 (680-109575-1) and BSA-MW-3D-0215 (680-109575-3) were analyzed for nitrate-nitrite as nitrogen in accordance with EPA Method 353.2. The samples were analyzed on 02/04/2015.

No analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

SULFATE

Samples CPA-MW-5D-0215 (680-109575-1) and BSA-MW-3D-0215 (680-109575-3) were analyzed for sulfate in accordance with EPA Method 375.4. The samples were analyzed on 02/11/2015.

Samples CPA-MW-5D-0215 (680-109575-1)[2X] and BSA-MW-3D-0215 (680-109575-3)[5X] required dilution prior to analysis. The reporting limits have been adjusted accordingly.

No analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

TOTAL ORGANIC CARBON

Samples CPA-MW-5D-0215 (680-109575-1) and BSA-MW-3D-0215 (680-109575-3) were analyzed for total organic carbon in accordance with EPA Method 415.1. The samples were analyzed on 02/24/2015.

TestAmerica Savannah

Case Narrative

Client: Solutia Inc.

Project/Site: 1Q15 LTM GW Sampling - 1403345

TestAmerica Job ID: 680-109575-1

SDG: KPS136

Job ID: 680-109575-1 (Continued)

Laboratory: TestAmerica Savannah (Continued)

No analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

DISSOLVED ORGANIC CARBON (DOC)

Samples CPA-MW-5D-F(0.2)-0215 (680-109575-2) and BSA-MW-3D-F(0.2)-0215 (680-109575-4) were analyzed for Dissolved Organic Carbon (DOC) in accordance with EPA Method 415.1. The samples were analyzed on 02/24/2015.

No analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Sample Summary

Client: Solutia Inc.

Project/Site: 1Q15 LTM GW Sampling - 1403345

TestAmerica Job ID: 680-109575-1

SDG: KPS136

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
680-109575-1	CPA-MW-5D-0215	Water	02/03/15 14:20	02/04/15 09:38
680-109575-2	CPA-MW-5D-F(0.2)-0215	Water	02/03/15 14:20	02/04/15 09:38
680-109575-3	BSA-MW-3D-0215	Water	02/03/15 15:15	02/04/15 09:38
680-109575-4	BSA-MW-3D-F(0.2)-0215	Water	02/03/15 15:15	02/04/15 09:38
680-109575-5	BSA-MW-3D-0215-EB	Water	02/03/15 15:15	02/04/15 09:38
680-109575-6	1Q15 LTM Trip Blank #3	Water	02/03/15 00:00	02/04/15 09:38

Method Summary

Client: Solutia Inc.

Project/Site: 1Q15 LTM GW Sampling - 1403345

TestAmerica Job ID: 680-109575-1

SDG: KPS136

Method	Method Description	Protocol	Laboratory
8260B	Volatile Organic Compounds (GC/MS)	SW846	TAL SAV
8270D	Semivolatile Organic Compounds (GC/MS)	SW846	TAL SAV
RSK-175	Dissolved Gases (GC)	RSK	TAL SAV
6010C	Metals (ICP)	SW846	TAL SAV
310.1	Alkalinity	MCAVW	TAL SAV
325.2	Chloride	MCAWW	TAL SAV
353.2	Nitrogen, Nitrate-Nitrite	MCAVW	TAL SAV
375.4	Sulfate	MCAVW	TAL SAV
415.1	TOC	MCAWW	TAL SL
415.1	DOC	MCAWW	TAL SL

Protocol References:

MCAWW = "Methods For Chemical Analysis Of Water And Wastes", EPA-600/4-79-020, March 1983 And Subsequent Revisions.

RSK = Sample Prep And Calculations For Dissolved Gas Analysis In Water Samples Using A GC Headspace Equilibration Technique, RSKSOP-175, Rev. 0, 8/11/94, USEPA Research Lab

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL SAV = TestAmerica Savannah, 5102 LaRoche Avenue, Savannah, GA 31404, TEL (912)354-7858

TAL SL = TestAmerica St. Louis, 13715 Rider Trail North, Earth City, MO 63045, TEL (314)298-8566

5

TestAmerica Savannah

Definitions/Glossary

Client: Solutia Inc.

RER

RPD

TEQ

RL

Relative error ratio

Toxicity Equivalent Factor (Dioxin)

Toxicity Equivalent Quotient (Dioxin)

Reporting Limit or Requested Limit (Radiochemistry)

Relative Percent Difference, a measure of the relative difference between two points

Project/Site: 1Q15 LTM GW Sampling - 1403345

TestAmerica Job ID: 680-109575-1

SDG: KPS136

Qualifiers	
GC/MS VOA	
	Overlittee Proceedings
Qualifier U	Qualifier Description
	Indicates the analyte was analyzed for but not detected.
GC/MS Semi	VOA
Qualifier	Qualifier Description
*	RPD of the LCS and LCSD exceeds the control limits
U	Indicates the analyte was analyzed for but not detected.
*	LCS or LCSD exceeds the control limits
Н	Sample was prepped or analyzed beyond the specified holding time
X	Surrogate is outside control limits
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.
GC VOA	
Qualifier	Qualifier Description
U	Indicates the analyte was analyzed for but not detected.
Metals	
Qualifier	Qualifier Description
U	Indicates the analyte was analyzed for but not detected.
U	Indicates the analyte was analyzed for but not detected.
Glossary	
Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CNF	Contains no Free Liquid
DER	Duplicate error ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision level concentration
MDA	Minimum detectable activity
EDL	Estimated Detection Limit
MDC	Minimum detectable concentration
MDL	Method Detection Limit
. 41	
ML	Minimum Level (Dioxin)
NC NC	Minimum Level (Dioxin) Not Calculated
NC	Not Calculated

Detection Summary

Client: Solutia Inc.

Project/Site: 1Q15 LTM GW Sampling - 1403345

TestAmerica Job ID: 680-109575-1

SDG: KPS136

Client Sample ID: CPA-MW-5D-0215

Lab Sample ID: 680-109575-1

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Chlorobenzene	1800		20		ug/L	20	-	8260B	Total/NA
2-Chlorophenol	22	*	11		ug/L	1		8270D	Total/NA
2-Chlorophenol - RE	22	Н	10		ug/L	1		8270D	Total/NA
Ethane	3.9		1.1		ug/L	1		RSK-175	Total/NA
Methane (TCD)	660		390		ug/L	1		RSK-175	Total/NA
Iron	17		0.050		mg/L	1		6010C	Total
Manganese	0.59		0.010		mg/L	1		6010C	Recoverable Total
Chloride	270		10		mg/L	10		325.2	Recoverable Total/NA
Sulfate	37		10		mg/L	2		375.4	Total/NA
Total Organic Carbon	5.8		1.0		mg/L	1		415.1	Total/NA
Analyte	Result	Qualifier	RL	RL	Unit	Dil Fac	D	Method	Prep Type
Alkalinity	540		5.0		mg/L	1	_	310.1	Total/NA
Carbon Dioxide, Free	59		5.0		mg/L	1		310.1	Total/NA

Client Sample ID: CPA-MW-5D-F(0.2)-0215

Lab Sample ID: 680-109575-2

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac	D Method	Prep Type
Iron, Dissolved	17	0.050	mg/L	1	6010C	Dissolved
Manganese, Dissolved	0.60	0.010	mg/L	1	6010C	Dissolved
Dissolved Organic Carbon	6.3	1.0	mg/L	1	415.1	Dissolved

Client Sample ID: BSA-MW-3D-0215

Lab Sample ID: 680-109575-3

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Benzene	77		20		ug/L	20	-	8260B	Total/NA
Chlorobenzene	1400		20		ug/L	20		8260B	Total/NA
1,4-Dichlorobenzene	330		20		ug/L	20		8260B	Total/NA
2-Chlorophenol	11	*	11		ug/L	1		8270D	Total/NA
2-Chlorophenol - RE	12	Н	11		ug/L	1		8270D	Total/NA
Ethane	2.6		1.1		ug/L	1		RSK-175	Total/NA
Ethylene	1.8		1.0		ug/L	1		RSK-175	Total/NA
Methane (TCD)	870		390		ug/L	1		RSK-175	Total/NA
Iron	9.5		0.050		mg/L	1		6010C	Total
Manganese	0.54		0.010		mg/L	1		6010C	Recoverable Total
Chloride	120		5.0		mg/L	5		325.2	Recoverable Total/NA
Sulfate	120		25		mg/L	5		375.4	Total/NA
Total Organic Carbon	4.0		1.0		mg/L	1		415.1	Total/NA
Analyte	Result	Qualifier	RL	RL	Unit	Dil Fac	D	Method	Prep Type
Alkalinity	420	_	5.0		mg/L		_	310.1	Total/NA
Carbon Dioxide, Free	26		5.0		mg/L	1		310.1	Total/NA

Client Sample ID: BSA-MW-3D-F(0.2)-0215

Lab Sample ID: 680-109575-4

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Iron, Dissolved	9.4		0.050		mg/L	1	_	6010C	Dissolved
Manganese, Dissolved	0.54		0.010		mg/L	1		6010C	Dissolved
Dissolved Organic Carbon	3.4		1.0		mg/L	1		415.1	Dissolved

This Detection Summary does not include radiochemical test results.

TestAmerica Savannah

Detection Summary

Project/Site: 1Q15 LTM GW Sampling - 1403345	l estAmerica Job ID: 680-109575-1 SDG: KPS136
Client Sample ID: BSA-MW-3D-0215-EB	Lab Sample ID: 680-109575-5
No Detections.	
Client Sample ID: 1Q15 LTM Trip Blank #3	Lab Sample ID: 680-109575-6
No Detections.	

Client: Solutia Inc.

Project/Site: 1Q15 LTM GW Sampling - 1403345

TestAmerica Job ID: 680-109575-1

SDG: KPS136

Client Sample ID: CPA-MW-5D-0215

Date Collected: 02/03/15 14:20 Date Received: 02/04/15 09:38 Lab Sample ID: 680-109575-1

Matrix: Water

Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil F
Benzene	20	U	20		ug/L		•	02/14/15 15:55	
Chlorobenzene	1800	D	20		ug/L			02/14/15 15:55	
1,2-Dichlorobenzene	20		20		ug/L			02/14/15 15:55	
1,3-Dichlorobenzene	20	U	20		ug/L			02/14/15 15:55	
1,4-Dichlorobenzene	20	U	20		ug/L			02/14/15 15:55	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil I
Toluene-d8 (Surr)	109		70 - 130					02/14/15 15:55	
1,2-Dichloroethane-d4 (Surr)	116		70 - 130					02/14/15 15:55	
Dibromofluoromethane (Surr)	118		70 - 130						
4-Bromofluorobenzene (Surr)	103		70 - 130 70 - 130					02/14/15 15:55 02/14/15 15:55	
Method: 8270D - Semivolatile O	raznia Compou	ndo (CCIMS	• • •						
Analyte	-	Qualifier	P) RL	MDI	Unit	D	Brangrad	A malumad	Dil.
4-Chloroaniline		U/ J	21	WIDL			Prepared	Analyzed	Dill
2-Chlorophenol		* 5	11		ug/L		02/05/15 16:14	02/13/15 14:00	
1,2,4-Trichlorobenzene		U/J	11		ug/L		02/05/15 16:14	02/13/15 14:00	
	11	0/ <	11		ug/L		02/05/15 16:14	02/13/15 14:00	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil
2-Fluorobiphenyl	57		32 - 114				02/05/15 16:14	02/13/15 14:00	
2-Fluorophenol	51		26 - 107				02/05/15 16:14	02/13/15 14:00	
Nitrobenzene-d5	53		30 - 117				02/05/15 16:14	02/13/15 14:00	
Phenol-d5	50		25 _ 109				02/05/15 16:14	02/13/15 14:00	
Terphenyl-d14	75		10 - 132				02/05/15 16:14	02/13/15 14:00	
2,4,6-Tribromophenol	74		34 - 140				02/05/15 16:14	02/13/15 14:00	
Method: 8270D - Semivolatile Oi	rganic Compou	nds (GC/MS	6) - RE						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil F
4-Chloroaniline	21	U.H.* J	21		ug/L		02/17/15 15:36	02/18/15 20:32	
2-Chlorophenol	22	ж J	10		ug/L		02/17/15 15:36	02/18/15 20:32	
1,2,4-Trichlorobenzene	10	UH J	10		ug/L		02/17/15 15:36	02/18/15 20:32	
Gurrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil
?-Fluorobiphenyl	65		32 - 114				02/17/15 15:36	02/18/15 20:32	
?-Fluorophenol	52		26 - 107				02/17/15 15:36	02/18/15 20:32	
							02/17/15 15:36	02/18/15 20:32	
Nitrobenzene-d5	60		30 ₋ 117						
the first of the control of the cont	60 53								
Phenol-d5			25 - 109				02/17/15 15:36	02/18/15 20:32	
Phenol-d5 Terphenyl-d14	53	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,							
Phenol-d5 Terphenyl-d14 2,4,6-Tribromophenol	53 81 68		25 ₋ 109 10 ₋ 132				02/17/15 15:36 02/17/15 15:36	02/18/15 20:32 02/18/15 20:32	
Phenol-d5 Terphenyl-d14 2,4,6-Tribromophenol Method: RSK-175 - Dissolved Ga	53 81 68 ases (GC)	Qualifier	25 - 109 10 - 132 34 - 140	MDI	Unit	n	02/17/15 15:36 02/17/15 15:36 02/17/15 15:36	02/18/15 20:32 02/18/15 20:32 02/18/15 20:32	Dil F
Phenol-d5 Ferphenyl-d14 2,4,6-Tribromophenol Method: RSK-175 - Dissolved Ga Analyte	53 81 68 ases (GC)	Qualifier	25 - 109 10 - 132 34 - 140 RL	MDL		<u>D</u>	02/17/15 15:36 02/17/15 15:36	02/18/15 20:32 02/18/15 20:32 02/18/15 20:32 Analyzed	Dil F
Phenol-d5 Ferphenyl-d14 2,4,6-Tribromophenol Wethod: RSK-175 - Dissolved Ga Analyte Ethane	53 81 68 ases (GC) Result 3.9		25 - 109 10 - 132 34 - 140 RL 1.1	MDL	ug/L	D	02/17/15 15:36 02/17/15 15:36 02/17/15 15:36	02/18/15 20:32 02/18/15 20:32 02/18/15 20:32 Analyzed 02/06/15 11:03	Dil F
Phenol-d5 Ferphenyl-d14 2,4,6-Tribromophenol Method: RSK-175 - Dissolved Ga Analyte Ethane Ethylene	53 81 68 ases (GC)		25 - 109 10 - 132 34 - 140 RL	MDL		D	02/17/15 15:36 02/17/15 15:36 02/17/15 15:36	02/18/15 20:32 02/18/15 20:32 02/18/15 20:32 Analyzed	Dil F
Phenol-d5 Ferphenyl-d14 R,4,6-Tribromophenol Wethod: RSK-175 - Dissolved Ga Analyte Ethane Ethylene Methane (TCD)	53 81 68 ases (GC) Result 3.9 1.0 660	U	25 - 109 10 - 132 34 - 140 RL 1.1 1.0	MDL	ug/L ug/L	D	02/17/15 15:36 02/17/15 15:36 02/17/15 15:36	02/18/15 20:32 02/18/15 20:32 02/18/15 20:32 Analyzed 02/06/15 11:03 02/06/15 11:03	Dil I
Phenol-d5 Ferphenyl-d14 2,4,6-Tribromophenol Method: RSK-175 - Dissolved Ga Analyte Ethane Ethylene Methane (TCD) Method: 6010C - Metals (ICP) - T	53 81 68 ases (GC) Result 3.9 1.0 660	U le	25 - 109 10 - 132 34 - 140 RL 1.1 1.0 390		ug/L ug/L ug/L		02/17/15 15:36 02/17/15 15:36 02/17/15 15:36 Prepared	02/18/15 20:32 02/18/15 20:32 02/18/15 20:32 Analyzed 02/06/15 11:03 02/06/15 11:03	
Nitrobenzene-d5 Phenol-d5 Terphenyl-d14 2,4,6-Tribromophenol Method: RSK-175 - Dissolved Ga Analyte Ethane Ethylene Methane (TCD) Method: 6010C - Metals (ICP) - T Analyte	53 81 68 ases (GC) Result 3.9 1.0 660	U	25 - 109 10 - 132 34 - 140 RL 1.1 1.0	MDL	ug/L ug/L ug/L	D	02/17/15 15:36 02/17/15 15:36 02/17/15 15:36	02/18/15 20:32 02/18/15 20:32 02/18/15 20:32 Analyzed 02/06/15 11:03 02/06/15 11:03	Dil F

TestAmerica Savannah

Client: Solutia Inc.

Project/Site: 1Q15 LTM GW Sampling - 1403345

TestAmerica Job ID: 680-109575-1

SDG: KPS136

Client Sample ID: CPA-MW-5D-0215

Date Collected: 02/03/15 14:20

Date Received: 02/04/15 09:38

Lab Sample ID: 680-109575-1

Matrix: Water

General Chemistry Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac Chloride 270 $\overline{\mathbb{D}}$ 10 mg/L 02/11/15 13:28 10 Nitrate as N 0.050 U 0.050 mg/L 02/04/15 16:44 1 Sulfate 10 37 D mg/L 02/11/15 12:42 2 **Total Organic Carbon** 5.8 1.0 mg/L 02/24/15 13:17 Analyte Result Qualifier RL Unit Prepared RL D Analyzed Dil Fac Alkalinity 5.0 540 mg/L 02/04/15 19:32 Carbon Dioxide, Free 59 5.0 mg/L 02/04/15 19:32

8

TestAmerica Savannah

Client: Solutia Inc.

Project/Site: 1Q15 LTM GW Sampling - 1403345

TestAmerica Job ID: 680-109575-1

SDG: KPS136

Client Sample ID: CPA-MW-5D-F(0.2)-0215

Date Collected: 02/03/15 14:20 Date Received: 02/04/15 09:38 Lab Sample ID: 680-109575-2

Matrix: Water

Method: 6010C - Metals (ICP) - Disso	olved								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Iron, Dissolved	17		0.050		mg/L		02/09/15 10:32	02/11/15 02:47	1
Manganese, Dissolved	0.60		0.010		mg/L		02/09/15 10:32	02/11/15 02:47	1
General Chemistry - Dissolved									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Dissolved Organic Carbon	6.3		1.0		mg/L			02/24/15 18:22	1

Ģ

Client: Solutia Inc.

Analyte

Manganese

Iron

Project/Site: 1Q15 LTM GW Sampling - 1403345

TestAmerica Job ID: 680-109575-1

SDG: KPS136

Client Sample ID: BSA-MW-3D-0215

Date Collected: 02/03/15 15:15 Date Received: 02/04/15 09:38 Lab Sample ID: 680-109575-3

Matrix: Water

Method: 8260B - Volatile Orga Analyte	•		ы	MDI	11=14	_	B		
-		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fa
Benzene		D	20		ug/L			02/15/15 14:43	2
Chlorobenzene	1400		20		ug/L			02/15/15 14:43	2
1,2-Dichlorobenzene	20		20		ug/L			02/15/15 14:43	2
1,3-Dichlorobenzene	20		20		ug/L			02/15/15 14:43	2
1,4-Dichlorobenzene	330	D	20		ug/L			02/15/15 14:43	2
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
Toluene-d8 (Surr)	110		70 _ 130					02/15/15 14:43	2
1,2-Dichloroethane-d4 (Surr)	118		70 - 130					02/15/15 14:43	2
Dibromofluoromethane (Surr)	119		70 - 130					02/15/15 14:43	2
4-Bromofluorobenzene (Surr)	101		70 - 130					02/15/15 14:43	2
Method: 8270D - Semivolatile	Organic Compou	ınds (GC/M	S)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
2-Chlorophenol		W 02	11		ug/L		02/05/15 16:14	02/13/15 14:24	
1,4-Dioxane	11	Ux J	11		ug/L		02/05/15 16:14	02/13/15 14:24	
1,2,4-Trichlorobenzene	11	User	11		ug/L		02/05/15 16:14	02/13/15 14:24	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
2-Fluorobiphenyl	59		32 - 114				02/05/15 16:14	02/13/15 14:24	
2-Fluorophenol	54		26 - 107				02/05/15 16:14	02/13/15 14:24	
Nitrobenzene-d5	59		30 - 117				02/05/15 16:14	02/13/15 14:24	
Phenol-d5	51		25 _ 109				02/05/15 16:14	02/13/15 14:24	
Terphenyl-d14	85		10 - 132				02/05/15 16:14	02/13/15 14:24	
2,4,6-Tribromophenol	81		34 - 140				02/05/15 16:14	02/13/15 14:24	
Method: 8270D - Semivolatile	Organic Compou	nds (GC/MS	S) - RF						
Analyte		Qualifier	RL RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
2-Chlorophenol	12	H J	11		ug/L		02/17/15 15:36	02/18/15 20:56	
1,4-Dioxane		UHT	11		ug/L		02/17/15 15:36	02/18/15 20:56	
1,2,4-Trichlorobenzene		UHT	11		ug/L		02/17/15 15:36	02/18/15 20:56	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
2-Fluorobiphenyl			32 - 114				02/17/15 15:36	02/18/15 20:56	
2-Fluorophenol	48		26 - 107				02/17/15 15:36	02/18/15 20:56	
Nitrobenzene-d5	57		30 ₋ 117				02/17/15 15:36	02/18/15 20:56	
Phenol-d5	49		25 - 109				02/17/15 15:36		
Terphenyl-d14	78		10 ₋ 132					02/18/15 20:56 02/18/15 20:56	
2,4,6-Tribromophenol	55		34 ₋ 140				02/17/15 15:36 02/17/15 15:36	02/18/15 20:56	
Bilathada DOM 477 Discours is	0 (00)						· · · -		
Method: RSK-175 - Dissolved Analyte	` '	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Ethane	2.6		1.1		ug/L		- Topareu	02/06/15 11:16	DII Fa
Ethylene	1.8		1.0		-				
•					ug/L			02/06/15 11:16	
Methane (TCD)	870		390		ug/L			02/06/15 11:16	

TestAmerica Savannah

Dil Fac

LAB 3/6/15

Analyzed

02/11/15 02:19

02/11/15 02:19

Prepared

02/09/15 10:32

02/09/15 10:32

RL

0.050

0.010

MDL Unit

mg/L

mg/L

Result Qualifier

9.5

0.54

Client: Solutia Inc.

Project/Site: 1Q15 LTM GW Sampling - 1403345

TestAmerica Job ID: 680-109575-1

SDG: KPS136

Client Sample ID: BSA-MW-3D-0215

Date Collected: 02/03/15 15:15 Date Received: 02/04/15 09:38 Lab Sample ID: 680-109575-3

Matrix: Water

General Chemistry Analyte	· · · Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	120	D	5.0		mg/L			02/11/15 13:28	5
Nitrate as N	0.050	U	0.050		mg/L			02/04/15 16:48	1
Sulfate	120	D	25		mg/L			02/11/15 12:35	5
Total Organic Carbon	4.0		1.0		mg/L			02/24/15 13:46	1
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Alkalinity	420		5.0		mg/L			02/04/15 20:05	1
Carbon Dioxide, Free	26		5.0		mg/L			02/04/15 20:05	1

(0)

Client: Solutia Inc.

Project/Site: 1Q15 LTM GW Sampling - 1403345

TestAmerica Job ID: 680-109575-1

SDG: KPS136

Client Sample ID: BSA-MW-3D-F(0.2)-0215

Lab Sample ID: 680-109575-4

Date Collected: 02/03/15 15:15 Date Received: 02/04/15 09:38 Matrix: Water

Method: 6010C - Metals (ICP) - Disso	olved								
Analyte	Result (Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Iron, Dissolved	9.4		0.050		mg/L		02/09/15 10:32	02/11/15 02:52	1
Manganese, Dissolved	0.54		0.010		mg/L		02/09/15 10:32	02/11/15 02:52	1
General Chemistry - Dissolved									
Analyte	Result (Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Dissolved Organic Carbon	3.4		1.0		mg/L			02/24/15 18:27	1

Client: Solutia Inc.

Project/Site: 1Q15 LTM GW Sampling - 1403345

TestAmerica Job ID: 680-109575-1

SDG: KPS136

Client Sample ID: BSA-MW-3D-0215-EB

Date Collected: 02/03/15 15:15 Date Received: 02/04/15 09:38 Lab Sample ID: 680-109575-5

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	1.0	U	1.0		ug/L			02/14/15 17:17	-
Chlorobenzene	1.0	U	1.0		ug/L			02/14/15 17:17	
1,2-Dichlorobenzene	1.0	U	1.0		ug/L			02/14/15 17:17	
1,3-Dichlorobenzene	1.0	U	1.0		ug/L			02/14/15 17:17	
1,4-Dichlorobenzene	1.0	U	1.0		ug/L			02/14/15 17:17	•
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
Toluene-d8 (Surr)	106		70 - 130					02/14/15 17:17	-
1,2-Dichloroethane-d4 (Surr)	98		70 - 130					02/14/15 17:17	
Dibromofluoromethane (Surr)	107		70 - 130					02/14/15 17:17	·
4-Bromofluorobenzene (Surr)	99		70 - 130					02/14/15 17:17	
Method: 8270D - Semivolatile (Analyte		nds (GC/MS Qualifier	6) RL	MDL	11-14	_			
2-Chlorophenol		UF 5	11	MIDL	ug/L	D	Prepared	Analyzed	Dil Fac
1,4-Dioxane	11		11		-		02/05/15 16:14	02/13/15 14:48	1
1,2,4-Trichlorobenzene		UxJ	11		ug/L		02/05/15 16:14	02/13/15 14:48	•
1,2,1		0 -	11		ug/L		02/05/15 16:14	02/13/15 14:48	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	57		32 - 114				02/05/15 16:14	02/13/15 14:48	1
2-Fluorophenol	53		26 - 107				02/05/15 16:14	02/13/15 14:48	1
Nitrobenzene-d5	57		30 _ 117				02/05/15 16:14	02/13/15 14:48	1
Phenol-d5	53		25 - 109				02/05/15 16:14	02/13/15 14:48	
Terphenyl-d14	83		10 - 132				02/05/15 16:14	02/13/15 14:48	1
2,4,6-Tribromophenol	67		34 - 140				02/05/15 16:14	02/13/15 14:48	1
Method: 8270D - Semivolatile (Organic Compou	nds (GC/MS	S) - RE						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2-Chlorophenol	11	UH J	11		ug/L		02/17/15 15:36	02/18/15 21:19	1
1,4-Dioxane	11	UH*J	11		ug/L		02/17/15 15:36	02/18/15 21:19	1
	11	UH J	11		ug/L		02/17/15 15:36	02/18/15 21:19	1
1,2,4-Trichlorobenzene	• • • • • • • • • • • • • • • • • • • •								
1,2,4-Trichlorobenzene Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
		Qualifier	22 - 114				Prepared 02/17/15 15:36	Analyzed 02/18/15 21:19	
Surrogate	%Recovery	Qualifier					02/17/15 15:36	02/18/15 21:19	1
Surrogate 2-Fluorobiphenyl	%Recovery	Qualifier	32 - 114				02/17/15 15:36 02/17/15 15:36	02/18/15 21:19 02/18/15 21:19	1
Surrogate 2-Fluorobiphenyl 2-Fluorophenol	%Recovery 60 51	Qualifier	32 - 114 26 - 107				02/17/15 15:36 02/17/15 15:36 02/17/15 15:36	02/18/15 21:19 02/18/15 21:19 02/18/15 21:19	
Surrogate 2-Fluorobiphenyl 2-Fluorophenol Nitrobenzene-d5	%Recovery 60 51 64	Qualifier	32 - 114 26 - 107 30 - 117				02/17/15 15:36 02/17/15 15:36	02/18/15 21:19 02/18/15 21:19	1

Client: Solutia Inc.

Project/Site: 1Q15 LTM GW Sampling - 1403345

TestAmerica Job ID: 680-109575-1

SDG: KPS136

Client Sample ID: 1Q15 LTM Trip Blank #3

Date Collected: 02/03/15 00:00 Date Received: 02/04/15 09:38

1,2-Dichloroethane-d4 (Surr)

Dibromofluoromethane (Surr)

4-Bromofluorobenzene (Surr)

Lab Sample ID: 680-109575-6

Matrix: Water

Method: 8260B - Volatile C Analyte	- '	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	1.0	U	1.0		ug/L			02/14/15 14:32	1
Chlorobenzene	1.0	U	1.0		ug/L			02/14/15 14:32	1
1,2-Dichlorobenzene	1.0	U	1.0		ug/L			02/14/15 14:32	1
1,3-Dichlorobenzene	1.0	Ü	1.0		ug/L			02/14/15 14:32	1
1,4-Dichlorobenzene	1.0	U	1.0		ug/L			02/14/15 14:32	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	107		70 - 130			-		02/14/15 14:32	1

70 - 130

70 - 130

70 - 130

97

105

107

 Analyzed
 Dil Fac

 02/14/15 14:32
 1

 02/14/15 14:32
 1

 02/14/15 14:32
 1

 02/14/15 14:32
 1

TestAmerica Savannah

Surrogate Summary

Client: Solutia Inc.

Project/Site: 1Q15 LTM GW Sampling - 1403345

TestAmerica Job ID: 680-109575-1

SDG: KPS136

Method: 8260B - Volatile Organic Compounds (GC/MS)

Matrix: Water

Prep Type: Total/NA

				Percent Sur	rrogate Reco
		TOL	12DCE	DBFM	BFB
Lab Sample ID	Client Sample ID	(70-130)	(70-130)	(70-130)	(70-130)
680-109575-1	CPA-MW-5D-0215	109	116	118	103
680-109575-3	BSA-MW-3D-0215	110	118	119	101
680-109575-5	BSA-MW-3D-0215-EB	106	98	107	99
680-109575-6	1Q15 LTM Trip Blank #3	107	97	105	107
LCS 680-370981/4	Lab Control Sample	115	106	112	102
LCS 680-371036/4	Lab Control Sample	112	104	109	100
LCSD 680-370981/5	Lab Control Sample Dup	114	104	109	101
LCSD 680-371036/5	Lab Control Sample Dup	112	104	110	99
MB 680-370981/9	Method Blank	109	98	106	105
MB 680-371036/9	Method Blank	108	98	105	101

Surrogate Legend

TOL = Toluene-d8 (Surr)

12DCE = 1,2-Dichloroethane-d4 (Surr)

DBFM = Dibromofluoromethane (Surr)

BFB = 4-Bromofluorobenzene (Surr)

Method: 8270D - Semivolatile Organic Compounds (GC/MS)

Matrix: Water

Prep Type: Total/NA

				Percent Sur	rogate Reco	very (Accept	ance Limits)	
		FBP	2FP	NBZ	PHL	TPH	TBP	
Lab Sample ID	Client Sample ID	(32-114)	(26-107)	(30-117)	(25-109)	(10-132)	(34-140)	
680-109575-1	CPA-MW-5D-0215	57	51	53	50	75	74	
680-109575-1 - RE	CPA-MW-5D-0215	65	52	60	53	81	68	
680-109575-3	BSA-MW-3D-0215	59	54	59	51	85	81	
680-109575-3 - RE	BSA-MW-3D-0215	57	48	57	49	78	55	
680-109575-5	BSA-MW-3D-0215-EB	57	53	57	53	83	67	
680-109575-5 - RE	BSA-MW-3D-0215-EB	60	51	64	52	82	59	
LCS 680-369646/7-A	Lab Control Sample	48	13 X	23 X	16 X	82	77	
LCS 680-371177/5-A	Lab Control Sample	72	59	72	64	80	78	
LCSD 680-369646/8-A	Lab Control Sample Dup	69	47	55	50	81	84	
LCSD 680-371177/6-A	Lab Control Sample Dup	55	28	50	25	68	61	
MB 680-369646/6-A	Method Blank	73	57	61	58	104	90	
MB 680-371177/4-A	Method Blank	54	41	51	45	91	54	

Surrogate Legend

FBP = 2-Fluorobiphenyl

2FP = 2-Fluorophenol

NBZ = Nitrobenzene-d5

PHL = Phenol-d5

TPH = Terphenyl-d14

TBP = 2,4,6-Tribromophenol

TestAmerica Savannah

QC Sample Results

Client: Solutia Inc.

Project/Site: 1Q15 LTM GW Sampling - 1403345

TestAmerica Job ID: 680-109575-1

SDG: KPS136

Method: 8260B - Volatile Organic Compounds (GC/MS)

Lab Sample ID: MB 680-370981/9

Matrix: Water

Analysis Batch: 370981

Client Sample ID: Method Blank

Prep Type: Total/NA

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	1.0	U	1.0		ug/L			02/14/15 13:16	1
Chlorobenzene	1.0	U	1.0		ug/L			02/14/15 13:16	1
1,2-Dichlorobenzene	1.0	U	1.0		ug/L			02/14/15 13:16	1
1,3-Dichlorobenzene	1.0	U	1.0		ug/L			02/14/15 13:16	1
1,4-Dichlorobenzene	1.0	U	1.0		ug/L			02/14/15 13:16	1

MR MR

	IND	MID				
Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	109		70 - 130		02/14/15 13:16	
1,2-Dichloroethane-d4 (Surr)	98		70 - 130		02/14/15 13:16	1
Dibromofluoromethane (Surr)	106		70 - 130		02/14/15 13:16	1
4-Bromofluorobenzene (Surr)	105		70 - 130		02/14/15 13:16	1

Lab Sample ID: LCS 680-370981/4

Matrix: Water

Analysis Batch: 370981

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Spike LCS LCS %Rec. Analyte Added Result Qualifier Unit %Rec Limits Benzene 50.0 53.5 ug/L 107 73 - 131 Chlorobenzene 50.0 52.5 ug/L 105 80 - 120 1,2-Dichlorobenzene 50.0 53.1 ug/L 106 80 - 120 1,3-Dichlorobenzene 50.0 52.1 ug/L 104 80 - 120 1,4-Dichlorobenzene 50.0 51.0 ug/L 102 80 - 120

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
Toluene-d8 (Surr)	115		70 - 130
1,2-Dichloroethane-d4 (Surr)	106		70 ₋ 130
Dibromofluoromethane (Surr)	112		70 ₋ 130
4-Bromofluorobenzene (Surr)	102		70 - 130

Lab Sample ID: LCSD 680-370981/5

Matrix: Water

Analysis Batch: 370981

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	50.0	53.2		ug/L		106	73 - 131	1	30
Chlorobenzene	50.0	51.0		ug/L		102	80 - 120	3	20
1,2-Dichlorobenzene	50.0	53.7		ug/L		107	80 - 120	1	20
1,3-Dichlorobenzene	50.0	53.4		ug/L		107	80 - 120	2	20
1,4-Dichlorobenzene	50.0	51.4		ug/L		103	80 - 120	1	20

LCSD LCSD

Surrogate	%Recovery	Qualifier	Limits
Toluene-d8 (Surr)	114	NAME OF TAXABLE PARTY.	70 - 130
1,2-Dichloroethane-d4 (Surr)	104		70 - 130
Dibromofluoromethane (Surr)	109		70 - 130
4-Bromofluorobenzene (Surr)	101		70 - 130

TestAmerica Savannah

Client: Solutia Inc.

Project/Site: 1Q15 LTM GW Sampling - 1403345

TestAmerica Job ID: 680-109575-1

SDG: KPS136

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 680-371036/9

Matrix: Water

Analysis Batch: 371036

Client Sample ID: Method Blank Prep Type: Total/NA

_	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	1.0	U	1.0		ug/L			02/15/15 13:20	1
Chlorobenzene	1.0	U	1.0		ug/L			02/15/15 13:20	1
1,2-Dichlorobenzene	1.0	U	1.0		ug/L			02/15/15 13:20	1
1,3-Dichlorobenzene	1.0	U	1.0		ug/L			02/15/15 13:20	1
1,4-Dichlorobenzene	1.0	U	1.0		ug/L			02/15/15 13:20	1

	MB MB				
Surrogate	%Recovery Qualif	er Limits	Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	108	70 - 130		02/15/15 13:20	1
1,2-Dichloroethane-d4 (Surr)	98	70 ₋ 130		02/15/15 13:20	1
Dibromofluoromethane (Surr)	105	70 ₋ 130		02/15/15 13:20	1
4-Bromofluorobenzene (Surr)	101	70 - 130		02/15/15 13:20	1

Lab Sample ID: LCS 680-371036/4

Matrix: Water

Analysis Batch: 371036

Client Sample ID: Lab Control Sample Prep Type: Total/NA

	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Benzene	50.0	53.0		ug/L		106	73 - 131
Chlorobenzene	50.0	51.8		ug/L		104	80 - 120
1,2-Dichlorobenzene	50.0	53.5		ug/L		107	80 - 120
1,3-Dichlorobenzene	50.0	53.2		ug/L		106	80 - 120
1,4-Dichlorobenzene	50.0	50.7		ug/L		101	80 - 120

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
Toluene-d8 (Surr)	112		70 - 130
1,2-Dichloroethane-d4 (Surr)	104		70 - 130
Dibromofluoromethane (Surr)	109		70 - 130
4-Bromofluorobenzene (Surr)	100		70 - 130

Lab Sample ID: LCSD 680-371036/5

Matrix: Water

Analysis Batch: 371036

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

	Spike	Spike LCSD LC					%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	50.0	52.7		ug/L		105	73 - 131	1	30
Chlorobenzene	50.0	51.7		ug/L		103	80 - 120	0	20
1,2-Dichlorobenzene	50.0	54.0		ug/L		108	80 - 120	1	20
1,3-Dichlorobenzene	50.0	52.5		ug/L		105	80 - 120	<mark>.</mark>	20
1,4-Dichlorobenzene	50.0	51.3		ug/L		103	80 - 120	1	20

LCSD LCSD

Surrogate	%Recovery	Qualifier	Limits
Toluene-d8 (Surr)	112		70 - 130
1,2-Dichloroethane-d4 (Surr)	104		70 - 130
Dibromofluoromethane (Surr)	110		70 - 130
4-Bromofluorobenzene (Surr)	99		70 - 130

TestAmerica Savannah

QC Sample Results

Client: Solutia Inc.

Project/Site: 1Q15 LTM GW Sampling - 1403345

TestAmerica Job ID: 680-109575-1

SDG: KPS136

Method: 8270D - Semivolatile Organic Compounds (GC/MS)

Lab Sample ID: MB 680-369646/6-A

Matrix: Water

Analysis Batch: 370829

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 369646

	IVID	IVID							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
4-Chloroaniline	20	U	20		ug/L		02/05/15 16:14	02/13/15 13:35	1
2-Chlorophenol	10	U	10		ug/L		02/05/15 16:14	02/13/15 13:35	1
1,4-Dioxane	10	U	10		ug/L		02/05/15 16:14	02/13/15 13:35	1
1,2,4-Trichlorobenzene	10	U	10		ug/L		02/05/15 16:14	02/13/15 13:35	1

MB MB

Surrogate	%Recovery Qu	ualifier	Limits	Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	73		32 - 114	02/05/15 16:14	02/13/15 13:35	1
2-Fluorophenol	57		26 - 107	02/05/15 16:14	02/13/15 13:35	1
Nitrobenzene-d5	61		30 - 117	02/05/15 16:14	02/13/15 13:35	1
Phenol-d5	58		25 - 109	02/05/15 16:14	02/13/15 13:35	1
Terphenyl-d14	104		10 - 132	02/05/15 16:14	02/13/15 13:35	1
2,4,6-Tribromophenol	90		34 - 140	02/05/15 16:14	02/13/15 13:35	1

Lab Sample ID: LCS 680-369646/7-A

Matrix: Water

Analysis Batch: 370829

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 369646

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
4-Chloroaniline	100	34.1		ug/L		34	10 - 112	
2-Chlorophenol	100	15.8	*	ug/L		16	38 - 98	
1,4-Dioxane	100	12.8	*	ug/L		13	16 _ 79	
1,2,4-Trichlorobenzene	100	19.4		ug/L		19	16 - 80	

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
2-Fluorobiphenyl	48		32 - 114
2-Fluorophenol	13	X	26 - 107
Nitrobenzene-d5	23	X	30 - 117
Phenol-d5	16	X	25 _ 109
Terphenyl-d14	82		10 - 132
2,4,6-Tribromophenol	77		34 - 140

Lab Sample ID: LCSD 680-369646/8-A

Matrix: Water

Analysis Batch: 370829

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Prep Batch: 369646

	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
4-Chloroaniline	100	10.2	J *	ug/L		10	10 - 112	108	50
2-Chlorophenol	100	59.1	*	ug/L		59	38 - 98	115	50
1,4-Dioxane	100	36.5	*	ug/L		37	16 _ 79	96	50
1,2,4-Trichlorobenzene	100	53.0	*	ug/L		53	16 - 80	93	50

LCSD LCSD

Surrogate	%Recovery	Qualifier	Limits
2-Fluorobiphenyl	69		32 - 114
2-Fluorophenol	47		26 - 107
Nitrobenzene-d5	55		30 - 117
Phenol-d5	50		25 - 109
Terphenyl-d14	81		10 - 132

TestAmerica Savannah

LAB 3/6/15

QC Sample Results

Client: Solutia Inc.

Project/Site: 1Q15 LTM GW Sampling - 1403345

TestAmerica Job ID: 680-109575-1

Client Sample ID: Lab Control Sample Dup

SDG: KPS136

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCSD 680-369646/8-A

Matrix: Water

Analysis Batch: 370829

Prep Type: Total/NA

Prep Batch: 369646

LCSD LCSD

Surrogate %Recovery Qualifier Limits 2,4,6-Tribromophenol 34 - 140

Lab Sample ID: MB 680-371177/4-A

Matrix: Water

Analysis Batch: 371444

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 371177

	INIB	MB						
Analyte	Result	Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
4-Chloroaniline	5.0	U	5.0	ug/L		02/17/15 15:36	02/18/15 20:08	1
2-Chlorophenol	2.5	U	2.5	ug/L		02/17/15 15:36	02/18/15 20:08	1
1,4-Dioxane	2.5	U	2.5	ug/L		02/17/15 15:36	02/18/15 20:08	1
1,2,4-Trichlorobenzene	2.5	U	2.5	ug/L		02/17/15 15:36	02/18/15 20:08	1

мв мв

Surrogate	%Recovery Q	Qualifier	Limits	Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	54		32 - 114	02/17/15 15:36	02/18/15 20:08	1
2-Fluorophenol	41		26 - 107	02/17/15 15:36	02/18/15 20:08	1
Nitrobenzene-d5	51		30 - 117	02/17/15 15:36	02/18/15 20:08	1
Phenol-d5	45		25 - 109	02/17/15 15:36	02/18/15 20:08	
Terphenyl-d14	91		10 - 132	02/17/15 15:36	02/18/15 20:08	1
2,4,6-Tribromophenol	54		34 - 140	02/17/15 15:36	02/18/15 20:08	1

Lab Sample ID: LCS 680-371177/5-A

Matrix: Water

Analysis Batch: 371444

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 371177

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
4-Chloroaniline	25.0	17.2		ug/L		69	10 - 112	
2-Chlorophenol	25.0	15.2		ug/L		61	38 - 98	
1,4-Dioxane	25.0	13.0		ug/L		52	16 - 79	
1,2,4-Trichlorobenzene	25.0	13.5		ug/L		54	16 - 80	

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
2-Fluorobiphenyl	72		32 - 114
2-Fluorophenol	59		26 - 107
Nitrobenzene-d5	72		30 - 117
Phenol-d5	64		25 - 109
Terphenyl-d14	80		10 - 132
2,4,6-Tribromophenol	78		34 140

Client Sample ID: Lab Control Sample Dup

Matrix: Water

Analysis Batch: 371444

Lab Sample ID: LCSD 680-371177/6-A

Prep Type: Total/NA Prep Batch: 371177

								Jucoii. O	
	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
4-Chloroaniline	25.0	4.57	J *	ug/L		18	10 - 112	116	50
2-Chlorophenol	25.0	10.4		ug/L		42	38 - 98	37	50
1,4-Dioxane	25.0	5.26	*	ug/L		21	16 - 79	85	50
1,2,4-Trichlorobenzene	25.0	10.1		ug/L		41	16 - 80	29	50

TestAmerica Savannah

Client: Solutia Inc.

Project/Site: 1Q15 LTM GW Sampling - 1403345

TestAmerica Job ID: 680-109575-1

SDG: KPS136

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCSD 680-371177/6-A

Matrix: Water

Analysis Batch: 371444

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Prep Batch: 371177

	LCSD	LCSD	
Surrogate	%Recovery	Qualifier	Limits
2-Fluorobiphenyl	55		32 - 114
2-Fluorophenol	28		26 - 107
Nitrobenzene-d5	50		30 - 117
Phenol-d5	25		25 - 109
Terphenyl-d14	68		10 - 132
2,4,6-Tribromophenol	61		34 - 140

Method: RSK-175 - Dissolved Gases (GC)

Lab Sample ID: MB 680-369841/7

Matrix: Water

Analysis Batch: 369841

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Type: Total/NA

		MB	MB							
Analyte		Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ethane		1.1	U	1.1		ug/L			02/06/15 10:42	1
Ethylen	е	1.0	U	1.0		ug/L			02/06/15 10:42	1
Methan	е	0.58	U	0.58		ug/L			02/06/15 10:42	1
Methan	e (TCD)	390	U	390		ug/L			02/06/15 10:42	1

Lab Sample ID: LCS 680-369841/2

Matrix: Water

Analysis Batch: 369841

	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Methane (TCD)	1920	1670		ua/l	_	87	75 125

Lab Sample ID: LCS 680-369841/5

Matrix: Water

Analysis Batch: 369841

Client	Sample	ID:	Lab	Control	Sample	
			-	Mages 810		

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Ethane	288	280		ug/L		97	75 - 125	
Ethylene	269	262		ug/L		97	75 - 125	
Methane	154	148		ug/L		96	75 ₋ 125	

Lab Sample ID: LCSD 680-369841/29

N

Matrix: Water				Prep *	Type: Tot	tal/NA			
Analysis Batch: 369841						*	,,		
	Spike	LCSD LCSD				%Rec.		RPD	
Analyte	Added	Result Qualifier	Unit	D	%Rec	Limits	RPD	Limit	

1680

1920

Lab Sample ID: LCSD 680-369841/6

Matrix: Water

Methane (TCD)

Analysis Batch: 369841

Client Sample ID:	Lab Control	Sample Dup
	em. em.	mm

75 - 125

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

30

Allary 513 Datoll. 000041									
	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Ethane	288	284		ug/L		98	75 - 125	1	30
Ethylene	269	263		ug/L		98	75 ₋ 125	0	30

TestAmerica Savannah

LAB 3/6/15

Page 24 of 38

ug/L

Spike

Added

154

LCSD LCSD

151

Result Qualifier

ug/L

Client: Solutia Inc.

Project/Site: 1Q15 LTM GW Sampling - 1403345

TestAmerica Job ID: 680-109575-1

SDG: KPS136

Method: RSK-175 - Dissolved Gases (GC) (Continued)

Lab Sample ID: LCSD 680-369841/6

Matrix: Water

Analyte

Methane

Analysis Batch: 369841

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

75 - 125

%Rec. RPD
Unit D %Rec Limits RPD Limit

Method: 6010C - Metals (ICP)

Lab Sample ID: MB 680-370112/1-A

Matrix: Water

Analysis Batch: 370470

Client Sample ID: Method Blank Prep Type: Total Recoverable

Prep Batch: 370112

2

	IVID	IVID							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Iron	0.050	U	0.050		mg/L		02/09/15 10:32	02/11/15 02:01	1
Iron, Dissolved	0.050	U	0.050		mg/L		02/09/15 10:32	02/11/15 02:01	1
Manganese	0.010	U	0.010		mg/L		02/09/15 10:32	02/11/15 02:01	1
Manganese, Dissolved	0.010	U	0.010		mg/L		02/09/15 10:32	02/11/15 02:01	1

Lab Sample ID: LCS 680-370112/2-A

Matrix: Water

Analysis Batch: 370470

Client Sample ID: Lab Control Sample Prep Type: Total Recoverable

Prep Batch: 370112

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Iron	5.00	4.82		mg/L		96	80 - 120	
Iron, Dissolved	5.00	4.82		mg/L		96	80 - 120	
Manganese	0.500	0.513		mg/L		103	80 - 120	
Manganese, Dissolved	0.500	0.513		mg/L		103	80 - 120	

Lab Sample ID: 680-109575-3 MS

Matrix: Water

Analysis Batch: 370470

Client Sample ID: BSA-MW-3D-0215

Prep Type: Total Recoverable
Prep Batch: 370112

	Sample	Sample	Spike	MS	MS				%Rec.	Baton, 570112
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Iron	9.5		5.00	14.0		mg/L		90	75 - 125	
Iron, Dissolved	9.5		5.00	14.0		mg/L		90	75 - 125	
Manganese	0.54		0.500	1.03		mg/L		99	75 ₋ 125	
Manganese, Dissolved	0.54		0.500	1.03		ma/L		99	75 - 125	

Lab Sample ID: 680-109575-3 MSD

Matrix: Water

Analysis Batch: 370470

Client Sample ID: BSA-MW-3D-0215

Prep Type: Total Recoverable

Prep Batch: 370112

		_							Prep I	3atch: 3	70112
	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Iron	9.5		5.00	14.2		mg/L		94	75 - 125	1	20
Iron, Dissolved	9.5		5.00	14.2		mg/L		94	75 - 125	1	20
Manganese	0.54		0.500	1.05		mg/L		101	75 - 125	1	20
Manganese, Dissolved	0.54		0.500	1.05		mg/L		101	75 - 125	1	20

TestAmerica Savannah

Client: Solutia Inc.

Project/Site: 1Q15 LTM GW Sampling - 1403345

TestAmerica Job ID: 680-109575-1

SDG: KPS136

Method:	310.1	- Alka	linity
---------	-------	--------	--------

Lab Sample ID: MB 680-369668/5

Matrix: Water

Analysis Batch: 369668

Client Sample ID: Method Blank Prep Type: Total/NA

- 1		IVIB	IVIB				
	Analyte	Result	Qualifier	RL	RL	Unit	
- 1							
- 1	Δlkalinity	5 A	11	E 0			

MB MB

1.0 U

MR MR

Result Qualifier

D Prepared Analyzed Dil Fac mg/L 02/04/15 19:09 Carbon Dioxide, Free 5.0 U 5.0 02/04/15 19:09 mg/L

Lab Sample ID: LCS 680-369668/6

Matrix: Water

Analysis Batch: 369668

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Spike LCS LCS %Rec. Analyte Added Result Qualifier Unit Limits %Rec Alkalinity 250 220 mg/L 88 80 - 120

Lab Sample ID: LCSD 680-369668/24

Matrix: Water

Analysis Batch: 369668

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

	Spike	LCSD	LCSD				%Rec.	RPD
Analyte Alkalinity	Added 250	Result 218	Qualifier	Unit mg/L	D	%Rec 87	80 - 120	 Limit 30

RL

1.0

Method: 325.2 - Chloride

Lab Sample ID: MB 680-370556/23

Matrix: Water

Analyte

Chloride

Analysis Batch: 370556

Prep Type: Total/NA

D

MDL Unit

mg/L

Client Sample ID: Method Blank

02/11/15 12:39

Analyzed Dil Fac

Lab Sample ID: LCS 680-370556/13

Matrix: Water

Analysis Batch: 370556

Client Sample ID: Lab Control Sample

Prepared

Prep Type: Total/NA

Spike LCS LCS %Rec. Analyte Added Result Qualifier Unit D %Rec Limits Chloride 25.0 25.8 mg/L 103 85 - 115

Method: 353.2 - Nitrogen, Nitrate-Nitrite

Lab Sample ID: MB 680-369648/13

Matrix: Water

Analysis Batch: 369648

Client Sample ID: Method Blank

Prep Type: Total/NA

Analyte Result Qualifier RL MDL Unit Prepared Analyzed Dil Fac Nitrate as N 0.050 U 0.050 mg/L 02/04/15 16:40

Lab Sample ID: LCS 680-369648/16

Matrix: Water

Analysis Batch: 369648

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Spike LCS LCS %Rec. Analyte Added Result Qualifier Unit %Rec Limits Nitrate as N 0.500 0.527 mg/L 105 75 - 125 Nitrate Nitrite as N 1.00 1.03 mg/L 103 90 - 110

TestAmerica Savannah

Client: Solutia Inc.

Project/Site: 1Q15 LTM GW Sampling - 1403345

TestAmerica Job ID: 680-109575-1

Client Sample ID: BSA-MW-3D-0215

Prep Type: Total/NA

SDG: KPS136

Mathad.	252 2	Alitronon	Alideada Alideida	110 m am 45 m a a a a 31
MICHION.	JUJ.L	- NILLOGGIL	Nitrate-Nitrite	(Continued)

Lab Sample ID: LCS 680-369648/16 Client Sample ID: Lab Control Sample Matrix: Water Prep Type: Total/NA Analysis Batch: 369648

Spike LCS LCS

%Rec. Analyte Added Result Qualifier Unit D %Rec Limits Nitrite as N 0.500 0.505 mg/L 101 90 - 110

Lab Sample ID: 680-109575-1 MS

Matrix: Water

Analysis Batch: 369648

Client Sample ID: CPA-MW-5D-0215 Prep Type: Total/NA

Sample Sample Spike MS MS %Rec. Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits Nitrate as N 0.050 U 0.500 0.524 mg/L 105 75 - 125 Nitrate Nitrite as N 0.050 U 1.00 1.03 mg/L 103 90 - 110 Nitrite as N 0.050 U 0.500 0.504 mg/L 101 90 - 110

Lab Sample ID: 680-109575-1 MSD

Client Sample ID: CPA-MW-5D-0215 Matrix: Water Prep Type: Total/NA Analysis Batch: 369648

Sample Sample Spike MSD MSD %Rec. Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits RPD Limit Nitrate as N 0.050 U 0.500 0.526 mg/L 105 75 - 125 0 30 Nitrate Nitrite as N 0.050 U 1.00 1.03 mg/L 103 90 - 110 0 10 Nitrite as N 0.050 U 0.500 0.506 mg/L 101 90 - 110 0 10

Lab Sample ID: 680-109575-3 DU

Matrix: Water

Analysis Batch: 369648

Sample Sample DU DU RPD Analyte Result Qualifier Result Qualifier Unit D RPD Limit Nitrate as N 0.050 U 0.050 U mg/L NC 30

Method: 375.4 - Sulfate

Lab Sample ID: MB 680-370564/58

Client Sample ID: Method Blank Matrix: Water Prep Type: Total/NA Analysis Batch: 370564

MB MB Analyte Result Qualifier RL MDL Unit Prepared Analyzed Dil Fac Sulfate 5.0 U 5.0 mg/L 02/11/15 14:00

Matrix: Water

Analysis Batch: 370564

Lab Sample ID: LCS 680-370564/4 Client Sample ID: Lab Control Sample Prep Type: Total/NA

Spike LCS LCS %Rec. Analyte Added Result Qualifier Unit D %Rec Limits Sulfate 20.0 20.5 mg/L 102 75 - 125

TestAmerica Savannah

Client: Solutia Inc.

Project/Site: 1Q15 LTM GW Sampling - 1403345

TestAmerica Job ID: 680-109575-1

SDG: KPS136

Method: 415.1 - DOC

Lab Sample ID: MB 160-175823/43

Matrix: Water

Analysis Batch: 175823

Client Sample ID: Method Blank

Prep Type: Dissolved

MB MB

Analyte Result Qualifier RL MDL Unit Prepared Analyzed Dil Fac Dissolved Organic Carbon 1.0 U 1.0 mg/L 02/24/15 17:05

Lab Sample ID: LCS 160-175823/44

Matrix: Water

Analysis Batch: 175823

Client Sample ID: Lab Control Sample Prep Type: Dissolved

Spike LCS LCS %Rec.

mg/L

Analyte Added Result Qualifier Unit %Rec Limits Dissolved Organic Carbon 10.0 9.87 mg/L 99 90 - 110

Method: 415.1 - TOC

Lab Sample ID: MB 160-175822/4

Matrix: Water

Analysis Batch: 175822

MB MB

Analyte MDL Unit Result Qualifier RL Prepared Analyzed Dil Fac Total Organic Carbon 1.0 U 1.0 mg/L 02/24/15 12:28

9.67

Lab Sample ID: LCS 160-175822/5

Matrix: Water

Total Organic Carbon

Analysis Batch: 175822

Spike LCS LCS %Rec. Analyte Added Result Qualifier Unit D %Rec Limits

10.0

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample

90 - 110

Prep Type: Total/NA

Prep Type: Total/NA

QC Association Summary

Client: Solutia Inc.

Project/Site: 1Q15 LTM GW Sampling - 1403345

TestAmerica Job ID: 680-109575-1

SDG: KPS136

GC/MS VOA

Analysi	s Batch	: 370981
---------	---------	----------

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-109575-1	CPA-MW-5D-0215	Total/NA	Water	8260B	
680-109575-5	BSA-MW-3D-0215-EB	Total/NA	Water	8260B	
680-109575-6	1Q15 LTM Trip Blank #3	Total/NA	Water	8260B	
LCS 680-370981/4	Lab Control Sample	Total/NA	Water	8260B	
LCSD 680-370981/5	Lab Control Sample Dup	Total/NA	Water	8260B	
MB 680-370981/9	Method Blank	Total/NA	Water	8260B	

Analysis Batch: 371036

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-109575-3	BSA-MW-3D-0215	Total/NA	Water	8260B	
LCS 680-371036/4	Lab Control Sample	Total/NA	Water	8260B	
LCSD 680-371036/5	Lab Control Sample Dup	Total/NA	Water	8260B	,
MB 680-371036/9	Method Blank	Total/NA	Water	8260B	

GC/MS Semi VOA

Prep Batch: 369646

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-109575-1	CPA-MW-5D-0215	Total/NA	Water	3520C	
680-109575-3	BSA-MW-3D-0215	Total/NA	Water	3520C	
680-109575-5	BSA-MW-3D-0215-EB	Total/NA	Water	3520C	
LCS 680-369646/7-A	Lab Control Sample	Total/NA	Water	3520C	
LCSD 680-369646/8-A	Lab Control Sample Dup	Total/NA	Water	3520C	
MB 680-369646/6-A	Method Blank	Total/NA	Water	3520C	

Analysis Batch: 370829

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-109575-1	CPA-MW-5D-0215	Total/NA	Water	8270D	369646
680-109575-3	BSA-MW-3D-0215	Total/NA	Water	8270D	369646
680-109575-5	BSA-MW-3D-0215-EB	Total/NA	Water	8270D	369646
LCS 680-369646/7-A	Lab Control Sample	Total/NA	Water	8270D	369646
LCSD 680-369646/8-A	Lab Control Sample Dup	Total/NA	Water	8270D	369646
MB 680-369646/6-A	Method Blank	Total/NA	Water	8270D	369646

Prep Batch: 371177

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-109575-1 - RE	CPA-MW-5D-0215	Total/NA	Water	3520C	
680-109575-3 - RE	BSA-MW-3D-0215	Total/NA	Water	3520C	
680-109575-5 - RE	BSA-MW-3D-0215-EB	Total/NA	Water	3520C	
LCS 680-371177/5-A	Lab Control Sample	Total/NA	Water	3520C	
LCSD 680-371177/6-A	Lab Control Sample Dup	Total/NA	Water	3520C	
MB 680-371177/4-A	Method Blank	Total/NA	Water	3520C	

Analysis Batch: 371444

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-109575-1 - RE	CPA-MW-5D-0215	Total/NA	Water	8270D	371177
680-109575-3 - RE	BSA-MW-3D-0215	Total/NA	Water	8270D	371177
680-109575-5 - RE	BSA-MW-3D-0215-EB	Total/NA	Water	8270D	371177
LCS 680-371177/5-A	Lab Control Sample	Total/NA	Water	8270D	371177
LCSD 680-371177/6-A	Lab Control Sample Dup	Total/NA	Water	8270D	371177

TestAmerica Savannah

LAB 3/10/15

QC Association Summary

Client: Solutia Inc.

Project/Site: 1Q15 LTM GW Sampling - 1403345

TestAmerica Job ID: 680-109575-1

SDG: KPS136

GC/MS Semi VOA (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
MB 680-371177/4-A	Method Blank	Total/NA	Water	8270D	371177

GC VOA

Analysis Batch: 369841

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method Prep Ba	atch
680-109575-1	CPA-MW-5D-0215	Total/NA	Water	RSK-175	
680-109575-3	BSA-MW-3D-0215	Total/NA	Water	RSK-175	
LCS 680-369841/2	Lab Control Sample	Total/NA	Water	RSK-175	
LCS 680-369841/5	Lab Control Sample	Total/NA	Water	RSK-175	
LCSD 680-369841/29	Lab Control Sample Dup	Total/NA	Water	RSK-175	
LCSD 680-369841/6	Lab Control Sample Dup	Total/NA	Water	RSK-175	
MB 680-369841/7	Method Blank	Total/NA	Water	RSK-175	

Metals

Prep Batch: 370112

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-109575-1	CPA-MW-5D-0215	Total Recoverable	Water	3005A	
680-109575-2	CPA-MW-5D-F(0.2)-0215	Dissolved	Water	3005A	
680-109575-3	BSA-MW-3D-0215	Total Recoverable	Water	3005A	
680-109575-3 MS	BSA-MW-3D-0215	Total Recoverable	Water	3005A	
680-109575-3 MSD	BSA-MW-3D-0215	Total Recoverable	Water	3005A	
680-109575-4	BSA-MW-3D-F(0.2)-0215	Dissolved	Water	3005A	
LCS 680-370112/2-A	Lab Control Sample	Total Recoverable	Water	3005A	W 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
MB 680-370112/1-A	Method Blank	Total Recoverable	Water	3005A	

Analysis Batch: 370470

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-109575-1	CPA-MW-5D-0215	Total Recoverable	Water	6010C	370112
680-109575-2	CPA-MW-5D-F(0.2)-0215	Dissolved	Water	6010C	370112
680-109575-3	BSA-MW-3D-0215	Total Recoverable	Water	6010C	370112
680-109575-3 MS	BSA-MW-3D-0215	Total Recoverable	Water	6010C	370112
680-109575-3 MSD	BSA-MW-3D-0215	Total Recoverable	Water	6010C	370112
680-109575-4	BSA-MW-3D-F(0.2)-0215	Dissolved	Water	6010C	370112
LCS 680-370112/2-A	Lab Control Sample	Total Recoverable	Water	6010C	370112
MB 680-370112/1-A	Method Blank	Total Recoverable	Water	6010C	370112

General Chemistry

Analysis Batch: 175822

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-109575-1	CPA-MW-5D-0215	Total/NA	Water	415.1	
680-109575-3	BSA-MW-3D-0215	Total/NA	Water	415.1	
LCS 160-175822/5	Lab Control Sample	Total/NA	Water	415.1	
MB 160-175822/4	Method Blank	Total/NA	Water	415.1	

Analysis Batch: 175823

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-109575-2	CPA-MW-5D-F(0.2)-0215	Dissolved	Water	415.1	-

TestAmerica Savannah

QC Association Summary

Client: Solutia Inc.

MB 680-370564/58

Project/Site: 1Q15 LTM GW Sampling - 1403345

TestAmerica Job ID: 680-109575-1

SDG: KPS136

ent Sample ID A-MW-3D-F(0.2)-0215 o Control Sample thod Blank ent Sample ID A-MW-5D-0215 A-MW-5D-0215 A-MW-5D-0215 A-MW-3D-0215 A-MW-3D-0215 o Control Sample thod Blank	Prep Type Dissolved Dissolved Dissolved Prep Type Total/NA Total/NA Total/NA Total/NA Total/NA Total/NA Total/NA Total/NA	Matrix Water Water Water Matrix Water Water Water Water Water Water Water Water Water Water Water	Method 415.1 415.1 415.1 Method 353.2 353.2 353.2 353.2 353.2 353.2 353.2 353.2	Prep Batc
ent Sample ID A-MW-5D-0215 A-MW-5D-0215 A-MW-5D-0215 A-MW-5D-0215 A-MW-3D-0215 A-MW-3D-0215 D-Control Sample thod Blank	Dissolved Dissolved Dissolved Prep Type Total/NA Total/NA Total/NA Total/NA Total/NA Total/NA	Water Water Water Matrix Water Water Water Water Water Water Water Water Water	415.1 415.1 415.1 Method 353.2 353.2 353.2 353.2 353.2 353.2 353.2	
ent Sample ID A-MVV-5D-0215 A-MW-5D-0215 A-MW-5D-0215 A-MW-3D-0215 A-MW-3D-0215 A-MVV-3D-0215 D Control Sample thod Blank	Prep Type Total/NA Total/NA Total/NA Total/NA Total/NA Total/NA Total/NA	Matrix Water Water Water Water Water Water Water Water Water	Method 353.2 353.2 353.2 353.2 353.2 353.2 353.2	Prep Batc
ent Sample ID A-MVV-5D-0215 A-MW-5D-0215 A-MW-5D-0215 A-MW-3D-0215 A-MW-3D-0215 D-Control Sample thod Blank	Prep Type Total/NA Total/NA Total/NA Total/NA Total/NA Total/NA	Matrix Water Water Water Water Water	Method 353.2 353.2 353.2 353.2 353.2 353.2 353.2	Prep Batc
A-MW-5D-0215 A-MW-5D-0215 A-MW-5D-0215 A-MW-3D-0215 A-MW-3D-0215 o Control Sample thod Blank	Total/NA Total/NA Total/NA Total/NA Total/NA Total/NA	Water Water Water Water Water Water	353.2 353.2 353.2 353.2 353.2 353.2	Prep Batc
A-MW-5D-0215 A-MW-5D-0215 A-MW-5D-0215 A-MW-3D-0215 A-MW-3D-0215 o Control Sample thod Blank	Total/NA Total/NA Total/NA Total/NA Total/NA Total/NA	Water Water Water Water Water Water	353.2 353.2 353.2 353.2 353.2 353.2	Prep Batc
A-MW-5D-0215 A-MW-5D-0215 A-MW-3D-0215 A-MW-3D-0215 o Control Sample thod Blank	Total/NA Total/NA Total/NA Total/NA Total/NA Total/NA	Water Water Water Water Water Water	353.2 353.2 353.2 353.2 353.2 353.2	гтер васс
A-MW-5D-0215 A-MW-3D-0215 A-MW-3D-0215 o Control Sample thod Blank	Total/NA Total/NA Total/NA Total/NA	Water Water Water Water	353.2 353.2 353.2 353.2 353.2	
A-MW-3D-0215 A-MW-3D-0215 o Control Sample thod Blank	Total/NA Total/NA Total/NA	Water Water Water Water	353.2 353.2 353.2 353.2	
A-MW-3D-0215 o Control Sample thod Blank	Total/NA Total/NA	Water Water Water	353.2 353.2 353.2	
o Control Sample thod Blank	Total/NA	Water	353.2 353.2	
thod Blank	and the second of the second o	Water	353.2	
	Total/NA	Water		
ent Sample ID				
ent Sample ID				
	Prep Type	Matrix	Method	Prep Batcl
A-MW-5D-0215	Total/NA	Water	310.1	
A-MW-3D-0215	Total/NA	Water	310.1	
Control Sample	Total/NA	Water	310.1	
Control Sample Dup	Total/NA	Water	310.1	
thod Blank	Total/NA	Water	310.1	
ent Sample ID	Prep Type	Matrix	Method	Prep Batcl
A-MW-5D-0215	Total/NA	Water	325.2	
4-MW-3D-0215	Total/NA	Water	325.2	
Control Sample	Total/NA	Water	325.2	
thod Blank	Total/NA	Water	325.2	
ent Sample ID	Prep Type	Matrix	Method	Prep Batch
4-MW-5D-0215	Total/NA	Water	375.4	Top Date!
A-MW-3D-0215	Total/NA	Water	375.4	
Control Sample	Total/NA	Water	375.4	
֡֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜	ent Sample ID A-MW-5D-0215 A-MW-3D-0215 Control Sample thod Blank ent Sample ID A-MW-5D-0215 A-MW-5D-0215 Control Sample	A-MW-5D-0215 A-MW-3D-0215 Total/NA Total/NA Total/NA Total/NA Total/NA Total/NA Prep Type A-MW-5D-0215 Total/NA	A-MW-5D-0215 A-MW-3D-0215 Total/NA Water Total/NA Water Total/NA Water Total/NA Water Total/NA Water Total/NA Water Total/NA Water Water Total/NA Water Total/NA Water Total/NA Water Total/NA Water Total/NA Water Total/NA Water Total/NA Water Total/NA Water	A-MW-5D-0215 Total/NA Water 325.2 A-MW-3D-0215 Total/NA Water 325.2 Control Sample Total/NA Water 325.2 And Sample ID Prep Type Matrix Method A-MW-5D-0215 Total/NA Water 375.4 A-MW-3D-0215 Total/NA Water 375.4 A-MW-3D-0215 Total/NA Water 375.4 Control Sample ID Water 375.4 A-MW-3D-0215 Total/NA Water 375.4

Total/NA

Water

375.4

Lab Chronicle

Client: Solutia Inc.

Project/Site: 1Q15 LTM GW Sampling - 1403345

TestAmerica Job ID: 680-109575-1

SDG: KPS136

Client Sample ID: CPA-MW-5D-0215

Date Collected: 02/03/15 14:20 Date Received: 02/04/15 09:38 Lab Sample ID: 680-109575-1

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		20	370981	02/14/15 15:55	TF1	TAL SAV
Total/NA	Prep	3520C			369646	02/05/15 16:14	RBS	TAL SAV
Total/NA	Analysis	8270D		1	370829	02/13/15 14:00	RAM	TAL SAV
Total/NA	Prep	3520C	RE		371177	02/17/15 15:36	RBS	TAL SAV
Total/NA	Analysis	8270D	RE	1	371444	02/18/15 20:32	RAM	TAL SAV
Total/NA	Analysis	RSK-175		1	369841	02/06/15 11:03	AJMC	TAL SAV
Total Recoverable	Prep	3005A			370112	02/09/15 10:32	CRW	TAL SAV
Total Recoverable	Analysis	6010C		1	370470	02/11/15 02:42	всв	TAL SAV
Total/NA	Analysis	310.1		1	369668	02/04/15 19:32	LBH	TAL SAV
Total/NA	Analysis	325.2		10	370556	02/11/15 13:28	JME	TAL SAV
Total/NA	Analysis	353.2		1	369648	02/04/15 16:44	GRX	TAL SAV
Total/NA	Analysis	375.4		2	370564	02/11/15 12:42	JME	TAL SAV
Total/NA	Analysis	415.1		1	175822	02/24/15 13:17	JCB	TAL SL

Client Sample ID: CPA-MW-5D-F(0.2)-0215

Date Collected: 02/03/15 14:20

Date Received: 02/04/15 09:38

Lab Sample ID: 680-109575-2

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Dissolved	Prep	3005A			370112	02/09/15 10:32	CRW	TAL SAV
Dissolved	Analysis	6010C		1	370470	02/11/15 02:47	всв	TAL SAV
Dissolved	Analysis	415.1		1	175823	02/24/15 18:22	JCB	TAL SL

Client Sample ID: BSA-MW-3D-0215

Date Collected: 02/03/15 15:15

Date Received: 02/04/15 09:38

Lab Sample ID: 680-109575-3

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		20	371036	02/15/15 14:43	TF1	TAL SAV
Total/NA	Prep	3520C			369646	02/05/15 16:14	RBS	TAL SAV
Total/NA	Analysis	8270D		1	370829	02/13/15 14:24	RAM	TAL SAV
Total/NA	Prep	3520C	RE		371177	02/17/15 15:36	RBS	TAL SAV
Total/NA	Analysis	8270D	RE	1	371444	02/18/15 20:56	RAM	TAL SAV
Total/NA	Analysis	RSK-175		1	369841	02/06/15 11:16	AJMC	TAL SAV
Total Recoverable	Prep	3005A			370112	02/09/15 10:32	CRW	TAL SAV
Total Recoverable	Analysis	6010C		1	370470	02/11/15 02:19	всв	TAL SAV
Total/NA	Analysis	310.1		1	369668	02/04/15 20:05	LBH	TAL SAV
Total/NA	Analysis	325.2		5	370556	02/11/15 13:28	JME	TAL SAV
Total/NA	Analysis	353.2		1	369648	02/04/15 16:48	GRX	TAL SAV
Total/NA	Analysis	375.4		5	370564	02/11/15 12:35	JME	TAL SAV
Total/NA	Analysis	415.1		1	175822	02/24/15 13:46	JCB	TAL SL

TestAmerica Savannah

Client: Solutia Inc.

Project/Site: 1Q15 LTM GW Sampling - 1403345

TestAmerica Job ID: 680-109575-1

SDG: KPS136

Client Sample ID: BSA-MW-3D-F(0.2)-0215

Date Collected: 02/03/15 15:15 Date Received: 02/04/15 09:38 Lab Sample ID: 680-109575-4

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Dissolved	Prep	3005A			370112	02/09/15 10:32	CRW	TAL SAV
Dissolved	Analysis	6010C		1	370470	02/11/15 02:52	всв	TAL SAV
Dissolved	Analysis	415.1		1	175823	02/24/15 18:27	JCB	TAL SL

Client Sample ID: BSA-MW-3D-0215-EB

Date Collected: 02/03/15 15:15 Date Received: 02/04/15 09:38 Lab Sample ID: 680-109575-5

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	370981	02/14/15 17:17	TF1	TAL SAV
Total/NA	Prep	3520C			369646	02/05/15 16:14	RBS	TAL SAV
Total/NA	Analysis	8270D		1	370829	02/13/15 14:48	RAM	TAL SAV
Total/NA	Prep	3520C	RE		371177	02/17/15 15:36	RBS	TAL SAV
Total/NA	Analysis	8270D	RE	1	371444	02/18/15 21:19	RAM	TAL SAV

Client Sample ID: 1Q15 LTM Trip Blank #3

Date Collected: 02/03/15 00:00 Date Received: 02/04/15 09:38 Lab Sample ID: 680-109575-6

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	370981	02/14/15 14:32	TF1	TAL SAV

Laboratory References:

TAL SAV = TestAmerica Savannah, 5102 LaRoche Avenue, Savannah, GA 31404, TEL (912)354-7858 TAL SL = TestAmerica St. Louis, 13715 Rider Trail North, Earth City, MO 63045, TEL (314)298-8566

12

Chain of Custody Record

TOS FATERICO

TestAmerica Savannah

5102 LaRoche Avenue

Savannah, GA 31404 phone 912.354.7858 fax	Regulatory Program: 📋 🗅 🗀	🗌 NPDES 🖸	RCRA 🗍 Other:			Tes	TestAmerica Laboratories, Inc.	ss, Inc.
Client Contact	Project Manager: Amanda Derhake	Site (Site Contact: Lori Bindner	Date:	2315	COC No:		
Golder Associates Inc.	Tel/Fax: 636-724-9191	(Lab	Lab Contact: Michele Kersey	y Carrier:	er: Rai Ex	-	of 1 COCs	
820 South Main Street	Analysis Turnaround Time		<i>†</i>			Sampler	yer;	ALTERNATION DE LA COMPETE
St. Charles, MO 63301	CALENDAR DAYS WORKING DAYS		-			For L	For Lab Use Only:	naman
(636) 724-9191 Phone	TAT if different from Below Standard			00		Walk-	Walk-in Client:	
(636) 724-9323 FAX	2 weeks	(A)	oleil	108		Lab	Lab Sampling:	
Project Name: 1Q15 LTM GW Sampling-1403345	1 week		ns/a	pλę				
Site: Solutia WG Krummrich Facility	2 days		07 0 0 0 0 1 0 1 0 1	пM		7005	Job / SUG No.:	
P O # 42447936	1 day		o) 3. Vin 6 826 826 826	1.8.1 \⊕∃	, ,		The second secon	
Samula Identification	Sample Sample (c=comp. Date Time e=cab Matrix	C # C # E beretiii	SVOCs by Total Fe/h Alk/CO2 to Chloride to	Nitrate by 4 TOC by 4	DOC PÀ		Sample Specific Notes:	West Marketon Comment
704-MW-50-0215	(#20 G	5	1 11 1 5 2	82				
NDA - MW-5D- F(0, 2)-0215		7		U A phieres	M			
. I	25.5	٩	231113	23				
34-HW-3D-F(0.2)-0215		ħ		+	M	-		
1854 - 141-30-02 15-FB	7	l _o	23					*****
1015 CM Linklank 来3	O VERNETATION OF THE PROPERTY	N	2					
		-THIRDE						
								Blanca and
								nun III da Bi
					680-109575 Chain of Custody	ain of Custody		
					-	-	NATHONIA DE PRODUCTION DE LA COLOR DE LA C	
Preservation Used: 1=1/ce, 2# HGP, 3= H2SO4, 4=HNO3; 5=NaDH, 6= Oth	-NaOH, 6≕ Other		1 2 4 1 1 2	2 4,3 3 4 3			then (month)	
Possible Hazard Identification: Are any samples from a listed EPA Hazardous Waste? Please List any EPA W Comments Section if the lab is to dispose of the sample.	aste Codes for		Sample Disposal (A fee may be assessed if samples are retained longer than a monury	nay be asses	sed ii sampies are i	eramen longer	ned s moterny	
[2] Non-Hazard [3] Hammable [3] Skin Irritant	Doison 8		Return to Client	Sodsio [2]	Disposal by Lab	Archive for	Months	
Special Instructions/QC Requirements & Comments: VOC headspace upon sampling: Yes(NO)	1-089	-SUSHOH	1-56	J.	1.2,0.8(60)0,9,	0,0	0.50	AND CONTRACTOR AS AS AS AS AS AS AS AS AS AS AS AS AS
Custody Seals Intact: Yes 7 No	Custody Seal No.: 419 314		Cooler Temp. (°C): Obs'd	C): Ops,q:	Corr'd:	Therm ID No.	ID No.:	Ï
	Company: Date/Time:	3.1	Received by:		Company:	Date/Time:	īme:	ļ
Reinquished by:			Received by:		Company:	Date/Time:	Ime:	
Relinquished by:	Company: Date/Time:		Received in Laboratory by	d	Company.	Date/Time	Time: 7.7.2	30
						7		

13

Login Sample Receipt Checklist

Client: Solutia Inc.

Job Number: 680-109575-1

SDG Number: KPS136

List Source: TestAmerica Savannah

Login Number: 109575 List Number: 1

Creator: Banda, Christy S

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	N/A	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.		
	True	

Login Sample Receipt Checklist

Client: Solutia Inc.

List Number: 2

Login Number: 109575

Creator: Clarke, Jill C

Job Number: 680-109575-1

SDG Number: KPS136

List Source: TestAmerica St. Louis List Creation: 02/05/15 02:48 PM

Question	Answer Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td>	True
The cooler's custody seal, if present, is intact.	True
Sample custody seals, if present, are intact.	N/A
The cooler or samples do not appear to have been compromised or tampered with.	True
Samples were received on ice.	True
Cooler Temperature is acceptable.	True
Cooler Temperature is recorded.	True 3.1
COC is present.	True
COC is filled out in ink and legible.	True
COC is filled out with all pertinent information.	True
Is the Field Sampler's name present on COC?	False
There are no discrepancies between the containers received and the COC.	True
Samples are received within Holding Time.	True
Sample containers have legible labels.	True
Containers are not broken or leaking.	True
Sample collection date/times are provided.	True
Appropriate sample containers are used.	True
Sample bottles are completely filled.	True
Sample Preservation Verified.	True
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A
Multiphasic samples are not present.	True
Samples do not require splitting or compositing.	True
Residual Chlorine Checked.	N/A

Certification Summary

Client: Solutia Inc.

Project/Site: 1Q15 LTM GW Sampling - 1403345

TestAmerica Job ID: 680-109575-1

SDG: KPS136

Laboratory: TestAmerica Savannah

All certifications held by this laboratory are listed. Not all certifications are applicable to this report.

Authority	Program	EPA Region	Certification ID	Expiration Date
	AFCEE		SAVLAB	
42LA	DoD ELAP		399.01	02-28-17
A2LA	ISO/IEC 17025		399.01	02-28-17
Alabama	State Program	4	41450	06-30-15
Arkansas DEQ	State Program	6	88-0692	01-31-16
California	State Program	9	2939	07-31-15
Colorado	State Program	8	N/A	12-31-15
Connecticut	State Program	1	PH-0161	03-31-15 *
lorida	NELAP	4	E87052	06-30-15
A Dept. of Agriculture	State Program	4	N/A	06-12-17
Georgia	State Program	4	N/A	06-30-15
Seorgia	State Program	4	803	06-30-15
Guam	State Program	9	14-004r	04-16-15 *
lawaii	State Program	9	N/A	06-30-15
inois	NELAP	5	200022	11-30-15
ndiana	State Program	5	N/A	06-30-15
owa	State Program	7	353	07-01-15
(entucky (DW)	State Program	4	90084	12-31-15
entucky (UST)	State Program	4	18	06-30-15
entucky (WW)	State Program	4	90084	12-31-15
puisiana	NELAP	6	30690	06-30-15
puisiana (DW)	NELAP	6	LA150014	12-31-15
laine	State Program	1	GA00006	09-24-16
aryland	State Program	3	250	12-31-15
assachusetts	State Program	1	M-GA006	06-30-15
chigan	State Program	5	9925	06-30-15
ssissippi	State Program	4	N/A	06-30-15
ontana	State Program	8	CERT0081	
braska	State Program	7	TestAmerica-Savannah	12-31-15 06-30-15
ew Jersey	NELAP	2	GA769	06-30-15
w Mexico	State Program	6	N/A	06-30-15
ew York	NELAP	2	10842	03-31-15 *
orth Carolina (DW)	State Program	4	13701	07-31-15
orth Carolina (WW/SW)	State Program	4	269	
klahoma	State Program	6	9984	12-31-15 08-31-15
ennsylvania	NELAP	3	68-00474	08-31-15
uerto Rico	State Program	2	GA00006	06-30-15 12-31-15
outh Carolina	State Program	4	98001	12-31-15
ennessee	State Program	4		06-30-15
exas	NELAP	4	TN02961	06-30-15
SDA	NELAP Federal	Ö	T104704185-14-7	11-30-15
irginia		3	SAV 3-04	06-11-17
/ashington	NELAP	3	460161	06-14-15
•	State Program	10	C805	06-10-15
Vest Virginia (DW)	State Program	3	9950C	12-31-15
Vest Virginia DEP	State Program	3	094	06-30-15
isconsin 	State Program	5	999819810	08-31-15
yoming	State Program	8	8TMS-L	06-30-15

Laboratory: TestAmerica St. Louis

All certifications held by this laboratory are listed. Not all certifications are applicable to this report.

TestAmerica Savannah

^{*} Certification renewal pending - certification considered valid.

Certification Summary

Client: Solutia Inc.

Project/Site: 1Q15 LTM GW Sampling - 1403345

TestAmerica Job ID: 680-109575-1

SDG: KPS136


Laboratory: TestAmerica St. Louis (Continued)

All certifications held by this laboratory are listed. Not all certifications are applicable to this report.

Authority	Program	EPA Region	Certification ID	Expiration Date
Alaska	State Program	10	MO00054	06-30-15
California	NELAP	9	2886	03-31-15
Connecticut	State Program	1	PH-0241	03-31-15 *
Florida	NELAP	4	E87689	06-30-15
Illinois	NELAP	5	200023	11-30-15
lowa	State Program	7	373	12-01-16
Kansas	NELAP	7	E-10236	03-31-15 *
Kentucky (DW)	State Program	4	90125	12-31-15
L-A-B	DoD ELAP		L2305	01-10-16
Louisiana	NELAP	6	LA150017	12-31-16
Maryland	State Program	3	310	09-30-15
Missouri	State Program	7	780	06-30-15
Nevada	State Program	9	MO000542013-1	07-31-15
New Jersey	NELAP	2	MO002	06-30-15
New Mexico	State Program	6		06-30-10 *
New York	NELAP	2	11616	03-31-15 *
North Dakota	State Program	8	R207	06-30-15
NRC	NRC		24-24817-01	12-31-22
Oklahoma	State Program	6	9997	08-31-15
Pennsylvania	NELAP	3	68-00540	02-28-16
South Carolina	State Program	4	85002001	06-30-15
Texas	NELAP	6	T104704193-13-6	07-31-15
USDA	Federal		P330-07-00122	01-09-17
Utah	NELAP	8	MO000542013-5	07-31-15
Virginia	NELAP	3	460230	06-14-15
Washington	State Program	10	C592	08-30-15
West Virginia DEP	State Program	3	381	08-31-15

TestAmerica Savannah

^{*} Certification renewal pending - certification considered valid.

Level IV Data Validation Summary Solutia Inc., W.G. Krummrich, Sauget, Illinois 1Q15 Long-Term Monitoring Program

Company Name: Golder Associates
Project Name: WGK-1Q15 LTM
Reviewer: L. Bindner
Laboratory: TestAmerica
SDG#: KPS137

Project Manager: A. Derhake Project Number: 140-3345 Sample Date: February 2015

	rix: Water						
	llytical Method: <u>VOC (8260B), Dissolved Gases (RSK-175), Metals (6010C), Alkalinity (310.1), C</u> te (353.2), Sulfate (375.4), TOC (415.1), and DOC (415.1)	<u> hloride (3</u>	<u>325.2)</u>	, Nitrogen, Nitrate			
	n ple Names: <u>GWE-5D-0215, GWE-5D-F(0.2)-0215, GWE-5M-0215, GWE-5M-F(0.2)-0215, GWE</u> E-3D-0215, GWE-3D-F(0.2)-0215, and 1Q15 LTM Trip Blank #2	-5S-0215	5, GW	E-5S-F(0.2)-0215			
Fiel	d Information	YES	NO	NA			
a)	Sampling dates noted?	\boxtimes					
b)	Does the laboratory narrative indicate deficiencies?	\boxtimes					
C	omments:						
	VOC: Samples GWE-5D-0215 and GWE-3D-0215 required dilution prior to analysis, reporting limits were adjusted accordingly. Insufficient volume to perform MS/MSD associated with batch 370981 and batch 371152.						
<u>D</u>	Dissolved Gases: Insufficient volume to perform MS/MSD associated with batch 369841.						
M	Metals: No deficiencies noted.						
<u>A</u>	Ikalinity: No deficiencies noted.						
	chloride: Samples GWE-5D-0215, GWE-5M-0215, GWE-5S-0215, and GWE-3D-0215 required dimits were adjusted accordingly.	lution prid	or to a	nalysis, reporting			
N	litrate-Nitrite as Nitrogen: No deficiencies noted.						
	ulfate: Samples GWE-5D-0215, GWE-5M-0215, GWE-5S-0215, and GWE-3D-0215 required dilunits were adjusted accordingly. Sulfate exceed the recovery criteria low for the MS/MSD of sample						
<u>T</u>	OC: No deficiencies noted.						
<u>D</u>	OC: No deficiencies noted.						
Cha	nin-of-Custody (COC)	YES	NO	NA			
a)	Was the COC signed by both field and laboratory personnel?	\boxtimes					
b)	Were samples received in good condition?						
C	omments: Samples were received at 0.5°C and 0.9°C, outside the 4°C +/-2°C criteria.						
Gen	neral	YES	NO	NA			
a)	Were hold times met for sample analysis?						
b)	Were the correct preservatives used?						
c)	Was the correct method used?	\boxtimes					
d)	Any sample dilutions noted?						

		and the latest terminal	Marian.			
			-10			
	- 3		17			
	- 60			April 2015	•	140-3345
N. SA	_	1 1 mg		April 2015	.,	1/10=33/15
1				April 2013		170-0070
		1.00(1)		•		

Co	mments: Detections in diluted analysis were qualified.				
GC/N	IS Instrument Performance Check (IPC) and Internal Standards (IS)	YES	NO	NA	
a)	IPC analyzed at the appropriate frequency and met the appropriate standards?	\boxtimes			
b)	Does BFB meet the ion abundance criteria?	\boxtimes			
c)	Internal Standard retention times and areas met appropriate criteria?	\boxtimes			
Co	mments: None				
Calib	prations	YES	NO	NA	
a)	Initial calibration analyzed at the appropriate frequency and met the appropriate standards?	\boxtimes			
b)	Continuing calibrations analyzed at the appropriate frequency and met the appropriate standards	s?			
		\boxtimes			
c)	Initial calibration verifications and blanks analyzed at the appropriate frequency and met the app	ropriate	stand	lards?	
		\boxtimes			
d)	Continuing calibration verifications and blanks analyzed at the appropriate frequency and met the	e approp	oriate	standard	s′
Com	ments: Analytes of interest met calibration standards.				
Blan	ks	YES	NO	NA	
a)	Were blanks (trip, equipment, method) performed at required frequency?	\boxtimes			
b)	Were analytes detected in any blanks?		\boxtimes		
Со	mments: Equipment blanks were not submitted with SDG KPS137.				
Matri	x Spike/Matrix Spike Duplicate (MS/MSD)	YES	NO	NA	
a)	Was MS/MSD accuracy criteria met?		\boxtimes		
b)	Was MS/MSD precision criteria met?	\boxtimes			
Co	mments: MS/MSD recovered low for sulfate in batch 370564. Data was not qualified based on M	S/MSD o	data a	lone.	
Labo	ratory Control Sample (LCS)	YES	NO	NA	
a)	LCS analyzed at the appropriate frequency and met appropriate standards?	\boxtimes			
Co	omments: None				
Surre	ogate (System Monitoring) Compounds	YES	NO	NA	
a)	Surrogate compounds analyzed at the appropriate frequency and met appropriate standards?	\boxtimes			
Cor	nments: None				
Dupl	icates	YES	NO	NA	
a)	Were field duplicates collected?		\boxtimes		
b)	Was field duplicate precision criteria met?			\boxtimes	
Co	mments: Duplicate samples were not submitted with SDG KPS137.				

Additional Comments: None

Qualifications:

Quality Control Issue	Compound(s)	Qualifier	Samples Affected
Compounds analyzed at a dilution	Benzene, Chlorobenzene, 1,4-Dichlorobenzene, Chloride, and Sulfate	D	GWE-3D, GWE-5S, GWE-5M, and GWE-5D

SDG KPS137

Sample Results from:

GWE-3D

GWE-5S

GWE-5M

GWE-5D

..... Links Review your project results through Total Access Have a Question?

Ask.

www.testamericainc.com

Visit us at:

Expert

TestAmerica

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc. TestAmerica Savannah 5102 LaRoche Avenue Savannah, GA 31404 Tel: (912)354-7858

TestAmerica Job ID: 680-109575-2

TestAmerica Sample Delivery Group: KPS137

Client Project/Site: 1Q15 LTM GW Sampling - 1403345

For:

Solutia Inc. 575 Maryville Centre Dr. Saint Louis, Missouri 63141

Attn: Mr. Jerry Rinaldi

Michele Kersey

Authorized for release by: 2/25/2015 2:59:46 PM

Michele Kersey, Project Manager I (912)354-7858

michele.kersey@testamericainc.com

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

LAR 3/24/15

Table of Contents

Cover Page	1
Table of Contents	
Definitions	
Case Narrative	
Detection Summary	6
Client Sample Results	
Surrogate Summary	17
QC Sample Results	18
QC Association	25
Chronicle	28
Certification Summary	31
Method Summary	33
Sample Summary	34
	35
Receipt Checklists	36

Definitions/Glossary

Client: Solutia Inc.

Project/Site: 1Q15 LTM GW Sampling - 1403345

TestAmerica Job ID: 680-109575-2

SDG: KPS137

Qualifiers

GC/MS VOA

Qualifier U

Qualifier Description

Indicates the analyte was analyzed for but not detected.

GC VOA

Qualifier

Qualifier Description

U Indicates the analyte was analyzed for but not detected.

Metals

Qualifier

Qualifier Description

Indicates the analyte was analyzed for but not detected.

Reporting Limit or Requested Limit (Radiochemistry)

Toxicity Equivalent Factor (Dioxin)

Toxicity Equivalent Quotient (Dioxin)

Relative Percent Difference, a measure of the relative difference between two points

General Chemistry

Qualifier	Qualifier Description
4	MS, MSD: The analyte present in the original sample is greater than 4 times the matrix spike concentration; therefore, control limits are not
	applicable.
U	Indicates the analyte was analyzed for but not detected.

Glossary

RL

RPD

TEF

TEQ

Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CNF	Contains no Free Liquid
DER	Duplicate error ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision level concentration
MDA	Minimum detectable activity
EDL	Estimated Detection Limit
MDC	Minimum detectable concentration
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
NC	Not Calculated
ND	Not detected at the reporting limit (or MDL or EDL if shown)
PQL	Practical Quantitation Limit
QC	Quality Control
RER	Relative error ratio

Case Narrative

Client: Solutia Inc.

Project/Site: 1Q15 LTM GW Sampling - 1403345

TestAmerica Job ID: 680-109575-2

SDG: KPS137

Job ID: 680-109575-2

Laboratory: TestAmerica Savannah

Narrative

CASE NARRATIVE

Client: Solutia Inc.

Project: 1Q15 LTM GW Sampling - 1403345

Report Number: 680-109575-2

With the exceptions noted as flags or footnotes, standard analytical protocols were followed in the analysis of the samples and no problems were encountered or anomalies observed. In addition all laboratory quality control samples were within established control limits, with any exceptions noted below. Each sample was analyzed to achieve the lowest possible reporting limit within the constraints of the method. In the event of interference or analytes present at high concentrations, samples may be diluted. For diluted samples, the reporting limits are adjusted relative to the dilution required.

RECEIPT

The samples were received on 2/4/2015 9:38 AM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperatures of the 2 coolers at receipt time were 0.5° C and 0.9° C.

VOLATILE ORGANIC COMPOUNDS (GC-MS)

Samples GWE-5D-0215 (680-109575-7), GWE-5M-0215 (680-109575-9), GWE-5S-0215 (680-109575-11), GWE-3D-0215 (680-109575-13) and 1Q15 LTM Trip Blank #2 (680-109575-15) were analyzed for Volatile Organic Compounds (GC-MS) in accordance with EPA SW-846 Method 8260B. The samples were analyzed on 02/14/2015, 02/15/2015 and 02/17/2015.

Samples GWE-5D-0215 (680-109575-7)[2X] and GWE-3D-0215 (680-109575-13)[20X] required dilution prior to analysis. The reporting limits have been adjusted accordingly.

Insufficient sample volume was available to perform a matrix spike/matrix spike duplicate/sample duplicate (MS/MSD/DUP) associated with batch 370981.

The following sample(s) was diluted due to the nature of the sample matrix: GWE-5D-0215 (680-109575-7). Elevated reporting limits (RLs) are provided.

Insufficient sample volume was available to perform a matrix spike/matrix spike duplicate/sample duplicate (MS/MSD/DUP) associated with batch 371152.

No analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

DISSOLVED GASES

Samples GWE-5D-0215 (680-109575-7), GWE-5M-0215 (680-109575-9), GWE-5S-0215 (680-109575-11) and GWE-3D-0215 (680-109575-13) were analyzed for dissolved gases in accordance with RSK-175. The samples were analyzed on 02/06/2015.

Insufficient sample volume was available to perform a matrix spike/matrix spike duplicate (MS/MSD) associated with batch 369841.

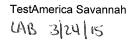
No analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

METALS (ICP)

Samples GWE-5D-F(0.2)-0215 (680-109575-8), GWE-5M-F(0.2)-0215 (680-109575-10), GWE-5S-F(0.2)-0215 (680-109575-12) and GWE-3D-F(0.2)-0215 (680-109575-14) were analyzed for Metals (ICP) in accordance with EPA SW-846 Method 6010C. The samples were prepared on 02/09/2015 and analyzed on 02/11/2015.

No analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

4



Case Narrative

Client: Solutia Inc.

Project/Site: 1Q15 LTM GW Sampling - 1403345

TestAmerica Job ID: 680-109575-2

SDG: KPS137

Job ID: 680-109575-2 (Continued)

Laboratory: TestAmerica Savannah (Continued)

METALS (ICP)

Samples GWE-5D-0215 (680-109575-7), GWE-5M-0215 (680-109575-9), GWE-5S-0215 (680-109575-11) and GWE-3D-0215 (680-109575-13) were analyzed for Metals (ICP) in accordance with EPA SW-846 Method 6010C. The samples were prepared on 02/09/2015 and analyzed on 02/11/2015.

No analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

ALKALINITY

Samples GWE-5D-0215 (680-109575-7), GWE-5M-0215 (680-109575-9), GWE-5S-0215 (680-109575-11) and GWE-3D-0215 (680-109575-13) were analyzed for alkalinity in accordance with EPA Method 310.1. The samples were analyzed on 02/04/2015.

No analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

CHLORIDE

Samples GWE-5D-0215 (680-109575-7), GWE-5M-0215 (680-109575-9), GWE-5S-0215 (680-109575-11) and GWE-3D-0215 (680-109575-13) were analyzed for Chloride in accordance with EPA Method 325.2. The samples were analyzed on 02/11/2015.

Samples GWE-5D-0215 (680-109575-7)[2X], GWE-5M-0215 (680-109575-9)[2X], GWE-5S-0215 (680-109575-11)[2X] and GWE-3D-0215 (680-109575-13)[20X] required dilution prior to analysis. The reporting limits have been adjusted accordingly.

No analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

NITRATE-NITRITE AS NITROGEN

Samples GWE-5D-0215 (680-109575-7), GWE-5M-0215 (680-109575-9), GWE-5S-0215 (680-109575-11) and GWE-3D-0215 (680-109575-13) were analyzed for nitrate-nitrite as nitrogen in accordance with EPA Method 353.2. The samples were analyzed on 02/04/2015.

No analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

SULFATE

Samples GWE-5D-0215 (680-109575-7), GWE-5M-0215 (680-109575-9), GWE-5S-0215 (680-109575-11) and GWE-3D-0215 (680-109575-13) were analyzed for sulfate in accordance with EPA Method 375.4. The samples were analyzed on 02/11/2015.

Sulfate exceeded the recovery criteria low for the MS and MSd of sample GWE-5S-0215 (680-109575-11) in batch 680-370564.

Refer to the QC report for details.

Samples GWE-5D-0215 (680-109575-7)[20X], GWE-5M-0215 (680-109575-9)[5X], GWE-5S-0215 (680-109575-11)[5X] and GWE-3D-0215 (680-109575-13)[10X] required dilution prior to analysis. The reporting limits have been adjusted accordingly.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

TOTAL ORGANIC CARBON

Samples GWE-5D-0215 (680-109575-7), GWE-5M-0215 (680-109575-9), GWE-5S-0215 (680-109575-11) and GWE-3D-0215 (680-109575-13) were analyzed for total organic carbon in accordance with EPA Method 415.1. The samples were analyzed on 02/24/2015.

No analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

DISSOLVED ORGANIC CARBON (DOC)

Samples GWE-5D-F(0.2)-0215 (680-109575-8), GWE-5M-F(0.2)-0215 (680-109575-10), GWE-5S-F(0.2)-0215 (680-109575-12) and GWE-3D-F(0.2)-0215 (680-109575-14) were analyzed for Dissolved Organic Carbon (DOC) in accordance with EPA Method 415.1. The samples were analyzed on 02/24/2015.

No analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

4

- (P)

The state of the s

TestAmerica Savannah

LAB 3 24 15

Detection Summary

Client: Solutia Inc.

Project/Site: 1Q15 LTM GW Sampling - 1403345

TestAmerica Job ID: 680-109575-2

SDG: KPS137

Client Sample ID: GWE-5D-0215

Lab	Sample	ID:	680-	109575-7

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Benzene	2.9		2.0		ug/L	2	_	8260B	Total/NA
Chlorobenzene	84		2.0		ug/L	2		8260B	Total/NA
1,4-Dichlorobenzene	9.8		2.0		ug/L	2		8260B	Total/NA
Methane	52		0.58		ug/L	1		RSK-175	Total/NA
Iron	13		0.050		mg/L	1		6010C	Total
Manganese	0.41		0.010		mg/L	1		6010C	Recoverable Total
Chloride			2.0		mg/L	2		325.2	Recoverable Total/NA
Sulfate	420		100		mg/L	20		375.4	Total/NA
Total Organic Carbon	3.0		1.0		mg/L	1		415.1	Total/NA
Analyte	Result	Qualifier	RL	RL	Unit	Dil Fac	D	Method	Prep Type
Alkalinity	330		5.0		mg/L	1	-	310.1	Total/NA
Carbon Dioxide, Free	20		5.0		mg/L	1		310.1	Total/NA

Client Sample ID: GWE-5D-F(0.2)-0215

Lab Sample ID: 680-109575-8

-	Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
-	Iron, Dissolved	13		0.050		mg/L	1	_	6010C	Dissolved
	Manganese, Dissolved	0.39		0.010		mg/L	1		6010C	Dissolved
-	Dissolved Organic Carbon	2.9		1.0		mg/L	1		415.1	Dissolved

Client Sample ID: GWE-5M-0215

Lab Sample ID: 680-109575-9

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Methane	46		0.58		ug/L	1	_	RSK-175	Total/NA
Iron	24		0.050		mg/L	1		6010C	Total
Manganese	1.2		0.010		mg/L	1		6010C	Recoverable Total
Chloride									Recoverable
	57		2.0		mg/L	2		325.2	Total/NA
Sulfate	110		25		mg/L	5		375.4	Total/NA
Total Organic Carbon	2.1		1.0		mg/L	1		415.1	Total/NA
Analyte	Result	Qualifier	RL	RL	Unit	Dil Fac	D	Method	Prep Type
Alkalinity	430		5.0		mg/L	1		310.1	Total/NA
Carbon Dioxide, Free	33		5.0		mg/L	1		310.1	Total/NA

Client Sample ID: GWE-5M-F(0.2)-0215

Lab Sample ID: 680-109575-10

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Iron, Dissolved	22		0.050		mg/L	1		6010C	Dissolved
Manganese, Dissolved	1.2		0.010		mg/L	1		6010C	Dissolved
Dissolved Organic Carbon	2.5		1.0		mg/L	1		415.1	Dissolved

Client Sample ID: GWE-5S-0215

Lab Sample ID: 680-109575-11

-	Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
	Methane	14		0.58		ug/L	1		RSK-175	Total/NA
	Iron	0.44		0.050		mg/L	1		6010C	Total
										Recoverable

This Detection Summary does not include radiochemical test results.

TestAmerica Savannah LAB 3/24/15

Detection Summary

Client: Solutia Inc.

Project/Site: 1Q15 LTM GW Sampling - 1403345

TestAmerica Job ID: 680-109575-2

SDG: KPS137

Client	Sample	ID:	GWE-5	S-0215	i (Contini	ued)

Lab Sa	ample	ID:	680-1	09	57	5-1	dimin.
--------	-------	-----	-------	----	----	-----	--------

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Manganese	0.21		0.010		mg/L	1		6010C	Total
									Recoverable
Chloride	29		2.0		mg/L	2		325.2	Total/NA
Nitrate as N	0.87		0.050		mg/L	1		353.2	Total/NA
Sulfate	110		25		mg/L	5		375.4	Total/NA
Total Organic Carbon	2.7		1.0		mg/L	1		415.1	Total/NA
Analyte	Result	Qualifier	RL	RL	Unit	Dil Fac	D	Method	Prep Type
Alkalinity	410		5.0		mg/L	1		310.1	Total/NA
Carbon Dioxide, Free	34		5.0		mg/L	1		310.1	Total/NA

Client Sample ID: GWE-5S-F(0.2)-0215

Lab Sample ID: 680-109575-12

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	; D	Method	Prep Type
Manganese, Dissolved	0.14	,	0.010		mg/L			6010C	Dissolved
Dissolved Organic Carbon	2.9		1.0		mg/L	•		415.1	Dissolved

Client Sample ID: GWE-3D-0215

Lab Sample ID: 680-109575-13

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Benzene	33		20		ug/L	20	_	8260B	Total/NA
Chlorobenzene	1700		20		ug/L	20		8260B	Total/NA
1,4-Dichlorobenzene	130		20		ug/L	20		8260B	Total/NA
Methane	50		0.58		ug/L	1		RSK-175	Total/NA
Iron	23		0.050		mg/L	1		6010C	Total
Manganese	0.73		0.010		mg/L	1		6010C	Recoverable Total Recoverable
Chloride	850		20		mg/L	20		325.2	Total/NA
Sulfate	300		50		mg/L	10		375.4	Total/NA
Total Organic Carbon	4.9		1.0		mg/L	1		415.1	Total/NA
Analyte	Result	Qualifier	RL	RL	Unit	Dil Fac	D	Method	Prep Type
Alkalinity	360		5.0		mg/L	1	_	310.1	Total/NA
Carbon Dioxide, Free	32		5.0		mg/L	1		310.1	Total/NA

Client Sample ID: GWE-3D-F(0.2)-0215

Lab Sample ID: 680-109575-14

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac [Method	Prep Type
Iron, Dissolved	23	0.050	mg/L	1	6010C	Dissolved
Manganese, Dissolved	0.73	0.010	mg/L	1	6010C	Dissolved
Dissolved Organic Carbon	4.8	1.0	mg/L	1	415.1	Dissolved

Client Sample ID: 1Q15 LTM Trip Blank #2

Lab Sample ID: 680-109575-15

No Detections.

This Detection Summary does not include radiochemical test results.

Client: Solutia Inc.

Project/Site: 1Q15 LTM GW Sampling - 1403345

TestAmerica Job ID: 680-109575-2

SDG: KPS137

Client Sample ID: GWE-5D-0215

Date Collected: 02/03/15 09:45 Date Received: 02/04/15 09:38 Lab Sample ID: 680-109575-7

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Benzene	2.9	D	2.0		ug/L			02/17/15 19:31	
Chlorobenzene	84	D	2.0		ug/L			02/17/15 19:31	:
1,2-Dichlorobenzene	2.0	Ü	2.0		ug/L			02/17/15 19:31	
1,3-Dichlorobenzene	2.0	U	2.0		ug/L			02/17/15 19:31	
1,4-Dichlorobenzene	9.8	D	2.0		ug/L			02/17/15 19:31	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
Toluene-d8 (Surr)	114		70 - 130					02/17/15 19:31	-
1,2-Dichloroethane-d4 (Surr)	121		70 - 130					02/17/15 19:31	
Dibromofluoromethane (Surr)	119		70 - 130					02/17/15 19:31	
4-Bromofluorobenzene (Surr)	106		70 - 130					02/17/15 19:31	
Method: RSK-175 - Dissolved	Gases (GC)								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Ethane	1.1	U	1.1		ug/L			02/06/15 11:29	
Ethylene	1.0	U	1.0		ug/L			02/06/15 11:29	
Methane	52		0.58		ug/L			02/06/15 11:29	•
Method: 6010C - Metals (ICP) -									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Iron	13		0.050		mg/L		02/09/15 10:32	02/11/15 02:56	
Manganese	0.41		0.010		mg/L		02/09/15 10:32	02/11/15 02:56	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	88	D	2.0		mg/L			02/11/15 12:56	
Nitrate as N	0.050	U	0.050		mg/L			02/04/15 16:50	
Sulfate	420	D	100		mg/L			02/11/15 13:44	20
Total Organic Carbon	3.0		1.0		mg/L			02/24/15 13:51	-
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Alkalinity	330		5.0		mg/L			02/04/15 19:57	

Client: Solutia Inc.

Project/Site: 1Q15 LTM GW Sampling - 1403345

TestAmerica Job ID: 680-109575-2

SDG: KPS137

Client Sample ID: GWE-5D-F(0.2)-0215

Date Collected: 02/03/15 09:45 Date Received: 02/04/15 09:38 Lab Sample ID: 680-109575-8

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Iron, Dissolved	13		0.050		mg/L		02/09/15 10:32	02/11/15 03:01	1
Manganese, Dissolved	0.39		0.010		mg/L		02/09/15 10:32	02/11/15 03:01	1
General Chemistry - Dissolved									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Dissolved Organic Carbon	2.9		1.0		mg/L			02/24/15 18:32	1

Client: Solutia Inc.

Project/Site: 1Q15 LTM GW Sampling - 1403345

TestAmerica Job ID: 680-109575-2

SDG: KPS137

Client Sample ID: GWE-5M-0215

Date Collected: 02/03/15 10:20 Date Received: 02/04/15 09:38 Lab Sample ID: 680-109575-9

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	1.0	U	1.0		ug/L			02/14/15 17:38	
Chlorobenzene	1.0	U	1.0		ug/L			02/14/15 17:38	1
1,2-Dichlorobenzene	1.0	U	1.0		ug/L			02/14/15 17:38	
1,3-Dichlorobenzene	1.0	U	1.0		ug/L			02/14/15 17:38	
1,4-Dichlorobenzene	1.0	U ·	1.0		ug/L			02/14/15 17:38	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	109		70 - 130					02/14/15 17:38	1
1,2-Dichloroethane-d4 (Surr)	99		70 - 130					02/14/15 17:38	1
Dibromofluoromethane (Surr)	106		70 - 130					02/14/15 17:38	1
4-Bromofluorobenzene (Surr)	104		70 _ 130					02/14/15 17:38	1
Method: RSK-175 - Dissolved Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ethane	1.1	U	1.1		ug/L			02/06/15 11:42	1
Ethylene	1.0	U	1.0		ug/L			02/06/15 11:42	1
Methane	46		0.58		ug/L			02/06/15 11:42	1
Method: 6010C - Metals (ICP)	· Total Recoverab	ole							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Iron	24		0.050		mg/L		02/09/15 10:32	02/11/15 03:15	1
Manganese	1.2		0.010		mg/L		02/09/15 10:32	02/11/15 03:15	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	57	D	2.0		mg/L			02/11/15 12:56	2
Nitrate as N	0.050	U	0.050		mg/L			02/04/15 16:54	1
Sulfate	110	D	25		mg/L			02/11/15 12:42	5
Total Organic Carbon	2.1		1.0		mg/L			02/24/15 13:56	1
Analyte		Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Alkalinity	430		5.0		mg/L			02/04/15 20:32	1
Carbon Dioxide, Free	33		5.0		mg/L			02/04/15 20:32	1

Client: Solutia Inc.

Project/Site: 1Q15 LTM GW Sampling - 1403345

TestAmerica Job ID: 680-109575-2

SDG: KPS137

Client Sample ID: GWE-5M-F(0.2)-0215

Date Collected: 02/03/15 10:20 Date Received: 02/04/15 09:38 Lab Sample ID: 680-109575-10

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Iron, Dissolved	22		0.050		mg/L		02/09/15 10:32	02/11/15 03:19	1
Manganese, Dissolved	1.2		0.010		mg/L		02/09/15 10:32	02/11/15 03:19	1
General Chemistry - Dissolved									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Dissolved Organic Carbon	2.5		1.0		mg/L			02/24/15 18:37	1

Client: Solutia Inc.

Project/Site: 1Q15 LTM GW Sampling - 1403345

TestAmerica Job ID: 680-109575-2

SDG: KPS137

Client Sample ID: GWE-5S-0215

Date Collected: 02/03/15 10:52 Date Received: 02/04/15 09:38 Lab Sample ID: 680-109575-11

Method: 8260B - Volatile Orga Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	1.0	U	1.0		ug/L		-	02/14/15 17:58	
Chlorobenzene	1.0	U	1.0		ug/L			02/14/15 17:58	
1,2-Dichlorobenzene	1.0	U	1.0		ug/L			02/14/15 17:58	
1,3-Dichlorobenzene	1.0	U	1.0		ug/L			02/14/15 17:58	
1,4-Dichlorobenzene	1.0	U	1.0		ug/L			02/14/15 17:58	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
Toluene-d8 (Surr)	106		70 - 130					02/14/15 17:58	-
1,2-Dichloroethane-d4 (Surr)	99		70 - 130					02/14/15 17:58	
Dibromofluoromethane (Surr)	108		70 - 130					02/14/15 17:58	1
4-Bromofluorobenzene (Surr)	100		70 _ 130					02/14/15 17:58	1
Method: RSK-175 - Dissolved	Gases (GC)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ethane	1.1	U	1.1		ug/L			02/06/15 11:55	
Ethylene	1.0	U	1.0		ug/L			02/06/15 11:55	
Methane	14		0.58		ug/L			02/06/15 11:55	
Method: 6010C - Metals (ICP) -	Total Recoverat	ole					*		
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Iron	0.44		0.050		mg/L		02/09/15 10:32	02/11/15 03:24	1
Manganese	0.21		0.010		mg/L		02/09/15 10:32	02/11/15 03:24	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	29	D	2.0		mg/L			02/11/15 12:29	2
Nitrate as N	0.87		0.050		mg/L			02/04/15 16:55	1
Sulfate	110	D	25		mg/L			02/11/15 12:10	5
Total Organic Carbon	2.7		1.0		mg/L			02/24/15 14:01	1
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Alkalinity	410		5.0		mg/L			02/04/15 19:41	1
Carbon Dioxide, Free	34		5.0		mg/L			02/04/15 19:41	1

Client: Solutia Inc.

Project/Site: 1Q15 LTM GW Sampling - 1403345

TestAmerica Job ID: 680-109575-2

SDG: KPS137

Client Sample ID: GWE-5S-F(0.2)-0215

Date Collected: 02/03/15 10:52 Date Received: 02/04/15 09:38 Lab Sample ID: 680-109575-12

Method: 6010C - Metals (ICP) - Diss	olved								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Iron, Dissolved	0.050	U	0.050		mg/L		02/09/15 10:32	02/11/15 03:28	1
Manganese, Dissolved	0.14		0.010		mg/L		02/09/15 10:32	02/11/15 03:28	1
General Chemistry - Dissolved									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Dissolved Organic Carbon	2.9		1.0		mg/L		-	02/24/15 18:42	1

Client: Solutia Inc.

Project/Site: 1Q15 LTM GW Sampling - 1403345

TestAmerica Job ID: 680-109575-2

SDG: KPS137

Client Sample ID: GWE-3D-0215

Date Collected: 02/03/15 12:10 Date Received: 02/04/15 09:38 Lab Sample ID: 680-109575-13

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Benzene	33	D	20		ug/L			02/15/15 15:04	2
Chlorobenzene	. 1700	D	20		ug/L			02/15/15 15:04	2
1,2-Dichlorobenzene	20	U	20		ug/L			02/15/15 15:04	2
1,3-Dichlorobenzene	20	U	20		ug/L			02/15/15 15:04	2
1,4-Dichlorobenzene	130	D	20		ug/L			02/15/15 15:04	2
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
Toluene-d8 (Surr)	109		70 _ 130					02/15/15 15:04	2
1,2-Dichloroethane-d4 (Surr)	114		70 - 130					02/15/15 15:04	2
Dibromofluoromethane (Surr)	115		70 - 130					02/15/15 15:04	2
4-Bromofluorobenzene (Surr)	103		70 - 130					02/15/15 15:04	2
Method: RSK-175 - Dissolved (Gases (GC)								
Analyte	. ,	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Ethane	1.1	U	1.1		ug/L	-		02/06/15 12:07	
Ethylene	1.0	U	1.0		ug/L			02/06/15 12:07	
Methane	50		0.58		ug/L			02/06/15 12:07	
Method: 6010C - Metals (ICP) -	Total Recoverab	ole							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Iron	23		0.050		mg/L		02/09/15 10:32	02/11/15 03:33	
Manganese	0.73		0.010		mg/L		02/09/15 10:32	02/11/15 03:33	
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Chloride	850	D	20		mg/L		-	02/11/15 14:01	20
Nitrate as N	0.050	U	0.050		mg/L			02/04/15 16:56	
Sulfate	300	D	50		mg/L			02/11/15 13:41	10
Total Organic Carbon	4.9		1.0		mg/L			02/24/15 14:06	•
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fa
Alkalinity	360		5.0		mg/L			02/04/15 19:48	

Client: Solutia Inc.

Project/Site: 1Q15 LTM GW Sampling - 1403345

TestAmerica Job ID: 680-109575-2

SDG: KPS137

Client Sample ID: GWE-3D-F(0.2)-0215

Date Collected: 02/03/15 12:10 Date Received: 02/04/15 09:38 Lab Sample ID: 680-109575-14

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Iron, Dissolved	23		0.050		mg/L		02/09/15 10:32	02/11/15 03:38	1
Manganese, Dissolved	0.73		0.010		mg/L		02/09/15 10:32	02/11/15 03:38	1
General Chemistry - Dissolved									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Dissolved Organic Carbon	4.8		1.0		mg/L			02/24/15 18:47	1

TestAmerica Savannah

LAB 3/24/15

Page 15 of 37

6

Client: Solutia Inc.

Project/Site: 1Q15 LTM GW Sampling - 1403345

TestAmerica Job ID: 680-109575-2

SDG: KPS137

Client Sample ID: 1Q15 LTM Trip Blank #2

Date Collected: 02/03/15 00:00 Date Received: 02/04/15 09:38 Lab Sample ID: 680-109575-15

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	1.0	U	1.0		ug/L			02/14/15 14:53	
Chlorobenzene	1.0	U	1.0		ug/L			02/14/15 14:53	1
1,2-Dichlorobenzene	1.0	U	1.0		ug/L			02/14/15 14:53	1
1,3-Dichlorobenzene	1.0	U	1.0		ug/L			02/14/15 14:53	
1,4-Dichlorobenzene	1.0	U	1.0		ug/L			02/14/15 14:53	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	106		70 - 130			_	-	02/14/15 14:53	1
1,2-Dichloroethane-d4 (Surr)	99		70 - 130					02/14/15 14:53	1
Dibromofluoromethane (Surr)	108		70 - 130					02/14/15 14:53	1
4-Bromofluorobenzene (Surr)	102		70 - 130					02/14/15 14:53	1

Surrogate Summary

Client: Solutia Inc.

Project/Site: 1Q15 LTM GW Sampling - 1403345

TestAmerica Job ID: 680-109575-2

SDG: KPS137

Method: 8260B - Volatile Organic Compounds (GC/MS)

Matrix: Water

Prep Type: Total/NA

				Percent Sur	ogate Recovery (Acceptance Limits)	
		TOL	12DCE	DBFM	BFB	
Lab Sample ID	Client Sample ID	(70-130)	(70-130)	(70-130)	(70-130)	
880-109575-7	GWE-5D-0215	114	121	119	106	
680-109575-9	GWE-5M-0215	109	99	106	104	
680-109575-11	GWE-5S-0215	106	99	108	100	
380-109575-13	GWE-3D-0215	109	114	115	103	
880-109575-15	1Q15 LTM Trip Blank #2	106	99	108	102	
_CS 680-370981/4	Lab Control Sample	115	106	112	102	
_CS 680-371036/4	Lab Control Sample	112	104	109	100	
_CS 680-371152/4	Lab Control Sample	119	110	117	101	
LCSD 680-370981/5	Lab Control Sample Dup	114	104	109	101	
LCSD 680-371036/5	Lab Control Sample Dup	112	104	110	99	
_CSD 680-371152/5	Lab Control Sample Dup	118	107	113	102	
MB 680-370981/9	Method Blank	109	98	106	105	
MB 680-371036/9	Method Blank	108	98	105	101	
MB 680-371152/8	Method Blank	110	103	109	102	

Surrogate Legend

TOL = Toluene-d8 (Surr)

12DCE = 1,2-Dichloroethane-d4 (Surr)

DBFM = Dibromofluoromethane (Surr)

BFB = 4-Bromofluorobenzene (Surr)

Client: Solutia Inc.

Project/Site: 1Q15 LTM GW Sampling - 1403345

TestAmerica Job ID: 680-109575-2

SDG: KPS137

Method: 8260B - Volatile Organic Compounds (GC/MS)

Lab Sample ID: MB 680-370981/9

Matrix: Water

Analysis Batch: 370981

Client Sample ID: Method Blank

Prep Type: Total/NA

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	1.0	U	1.0		ug/L			02/14/15 13:16	1
Chlorobenzene	1.0	U	1.0		ug/L			02/14/15 13:16	1
1,2-Dichlorobenzene	1.0	U	1.0		ug/L			02/14/15 13:16	1
1,3-Dichlorobenzene	1.0	U	1.0		ug/L			02/14/15 13:16	1
1,4-Dichlorobenzene	1.0	U	1.0		ug/L			02/14/15 13:16	1

MB MR

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	109		70 - 130		02/14/15 13:16	1
1,2-Dichloroethane-d4 (Surr)	98		70 - 130		02/14/15 13:16	1
Dibromofluoromethane (Surr)	106		70 - 130		02/14/15 13:16	1
4-Bromofluorobenzene (Surr)	105		70 - 130		02/14/15 13:16	1

Lab Sample ID: LCS 680-370981/4

Matrix: Water

Analysis Batch: 370981

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Spike LCS LCS %Rec. Analyte Added Result Qualifier Unit %Rec Limits Benzene 50.0 53.5 ug/L 107 73 - 131 Chlorobenzene 50.0 52.5 ug/L 105 80 - 120 1,2-Dichlorobenzene 50.0 53.1 ug/L 106 80 - 120 1,3-Dichlorobenzene 50.0 52.1 ug/L 104 80 - 120 1,4-Dichlorobenzene 50.0 51.0 ug/L 102 80 - 120

Spike

Added

50.0

50.0

50.0

50.0

50.0

LCSD LCSD

53.2

51.0

53.7

53.4

51.4

Result Qualifier

ug/L

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
Toluene-d8 (Surr)	115		70 - 130
1,2-Dichloroethane-d4 (Surr)	106		70 - 130
Dibromofluoromethane (Surr)	112		70 - 130
4-Bromofluorobenzene (Surr)	102		70 - 130

Lab Sample ID: LCSD 680-370981/5

Matrix: Water

Analyte

Benzene

Chlorobenzene

1,2-Dichlorobenzene

1,3-Dichlorobenzene

1,4-Dichlorobenzene

Analysis Batch: 370981

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

%Rec. RPD Unit %Rec D Limits RPD Limit ug/L 106 73 - 131 30 ug/L 102 80 - 120 3 20 ug/L 107 80 - 120 1 20 ug/L 107 80 - 120 2 20

80 - 120

103

LCSD LCSD Surrogate %Recovery Qualifier Limits Toluene-d8 (Surr) 114 70 - 130 1,2-Dichloroethane-d4 (Surr) 104 70 - 130 Dibromofluoromethane (Surr) 109 70 - 130 4-Bromofluorobenzene (Surr) 101 70 - 130

> TestAmerica Savannah LAB 3/24/15

20

Client: Solutia Inc.

Project/Site: 1Q15 LTM GW Sampling - 1403345

TestAmerica Job ID: 680-109575-2

SDG: KPS137

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 680-371036/9

Matrix: Water

Analysis Batch: 371036

Client Sample ID: Method Blank

Prep Type: Total/NA

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	1.0	U	1.0		ug/L			02/15/15 13:20	1
Chlorobenzene	1.0	U	1.0		ug/L			02/15/15 13:20	1
1,2-Dichlorobenzene	1.0	U	1.0		ug/L			02/15/15 13:20	1
1,3-Dichlorobenzene	1.0	U	1.0		ug/L			02/15/15 13:20	1
1,4-Dichlorobenzene	1.0	U	1.0		ug/L			02/15/15 13:20	1

	MB	MВ				
Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	108		70 - 130		02/15/15 13:20	1
1,2-Dichloroethane-d4 (Surr)	98		70 - 130		02/15/15 13:20	1
Dibromofluoromethane (Surr)	105		70 - 130		02/15/15 13:20	1
4-Bromofluorobenzene (Surr)	101		70 - 130		02/15/15 13:20	1

Lab Sample ID: LCS 680-371036/4

Matrix: Water

Analysis Batch: 371036

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	50.0	53.0		ug/L		106	73 - 131	
Chlorobenzene	50.0	51.8		ug/L		104	80 - 120	
1,2-Dichlorobenzene	50.0	53.5		ug/L		107	80 - 120	
1,3-Dichlorobenzene	50.0	53.2		ug/L		106	80 - 120	
1,4-Dichlorobenzene	50.0	50.7		ug/L		101	80 - 120	

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
Toluene-d8 (Surr)	112		70 - 130
1,2-Dichloroethane-d4 (Surr)	104		70 - 130
Dibromofluoromethane (Surr)	109		70 - 130
4-Bromofluorobenzene (Surr)	100		70 - 130

Lab Sample ID: LCSD 680-371036/5

Matrix: Water

Analysis Batch: 371036

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	50.0	52.7		ug/L		105	73 - 131	1	30
Chlorobenzene	50.0	51.7		ug/L		103	80 - 120	0	20
1,2-Dichlorobenzene	50.0	54.0		ug/L		108	80 - 120	1	20
1,3-Dichlorobenzene	50.0	52.5		ug/L		105	80 - 120	1	20
1,4-Dichlorobenzene	50.0	51.3		ug/L		103	80 - 120	1	20

	LCSD	LCSD	
Surrogate	%Recovery	Qualifier	Limits
Toluene-d8 (Surr)	112		70 - 130
1,2-Dichloroethane-d4 (Surr)	104		70 - 130
Dibromofluoromethane (Surr)	110		70 - 130
4-Bromofluorobenzene (Surr)	99		70 - 130

TestAmerica Savannah

LAB 3/24/15

Client: Solutia Inc.

Project/Site: 1Q15 LTM GW Sampling - 1403345

TestAmerica Job ID: 680-109575-2

SDG: KPS137

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 680-371152/8

Matrix: Water

Analysis Batch: 371152

Client Sample ID: Method Blank

Prep Type: Total/NA

IV.		MB								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
Benzene	1.0	U	1.0		ug/L			02/17/15 11:09	1	
Chlorobenzene	1.0	U	1.0		ug/L			02/17/15 11:09	1	
1,2-Dichlorobenzene	1.0	U	1.0		ug/L			02/17/15 11:09	1	
1,3-Dichlorobenzene	1.0	U	1.0		ug/L			02/17/15 11:09	1	
1,4-Dichlorobenzene	1.0	U	1.0		ug/L			02/17/15 11:09	1	

MB MB

Surrogate	%Recovery Qua	alifier Limits	Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	110	70 - 130	<u> </u>	02/17/15 11:09	1
1,2-Dichloroethane-d4 (Surr)	103	70 - 130		02/17/15 11:09	1
Dibromofluoromethane (Surr)	109	70 - 130		02/17/15 11:09	1
4-Bromofluorobenzene (Surr)	102	70 - 130		02/17/15 11:09	1

Lab Sample ID: LCS 680-371152/4

Matrix: Water

Analysis Batch: 371152

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	50.0	54.7		ug/L		109	73 - 131	
Chlorobenzene	50.0	53.0		ug/L		106	80 - 120	
1,2-Dichlorobenzene	50.0	53.5		ug/L		107	80 - 120	
1,3-Dichlorobenzene	50.0	53.9		ug/L		108	80 - 120	
1,4-Dichlorobenzene	50.0	51.7		ug/L		103	80 - 120	

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
Toluene-d8 (Surr)	119		70 - 130
1,2-Dichloroethane-d4 (Surr)	110		70 - 130
Dibromofluoromethane (Surr)	117		70 - 130
4-Bromofluorobenzene (Surr)	101		70 - 130

Lab Sample ID: LCSD 680-371152/5

Matrix: Water

Analysis Batch: 371152

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	50.0	53.7		ug/L		107	73 - 131	2	30
Chlorobenzene	50.0	51.6		ug/L		103	80 - 120	3	20
1,2-Dichlorobenzene	50.0	52.9		ug/L		106	80 - 120	1	20
1,3-Dichlorobenzene	50.0	52.6		ug/L		105	80 - 120	2	20
1,4-Dichlorobenzene	50.0	50.2		ua/L		100	80 120	3	20

LCSD LCSD

Surrogate	%Recovery	Qualifier	Limits
Toluene-d8 (Surr)	118		70 - 130
1,2-Dichloroethane-d4 (Surr)	107		70 - 130
Dibromofluoromethane (Surr)	113		70 - 130
4-Bromofluorobenzene (Surr)	102		70 - 130

TestAmerica Savannah LAB 3/24/15

Client: Solutia Inc.

Project/Site: 1Q15 LTM GW Sampling - 1403345

TestAmerica Job ID: 680-109575-2

SDG: KPS137

Method: RSK-175 - Dissolved Gases (GC)

Lab Sample ID: MB 680-369841/7

Matrix: Water

Analysis Batch: 369841

Client Sample ID: Method Blank

Prep Type: Total/NA

	IVIB	IVIB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ethane	1.1	U	1.1		ug/L			02/06/15 10:42	1
Ethylene	1.0	U	1.0		ug/L			02/06/15 10:42	1
Methane	0.58	U	0.58		ug/L			02/06/15 10:42	1

Lab Sample ID: LCS 680-369841/5

Matrix: Water

Analysis Batch: 369841

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Ethane	288	280		ug/L	_	97	75 - 125	
Ethylene	269	262		ug/L		97	75 _ 125	
Methane	154	148		ug/L		96	75 - 125	

Lab Sample ID: LCSD 680-369841/6

Matrix: Water

Analyte Ethane Ethylene Methane

Analysis Batch: 369841

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

									- 8
Spike	LCSD	LCSD				%Rec.		RPD	- 1
Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit	
288	284		ug/L		98	75 - 125	1	30	
269	263		ug/L		98	75 - 125	0	30	
154	151		ug/L		98	75 - 125	2	30	

Method: 6010C - Metals (ICP)

Lab Sample ID: MB 680-370112/1-A

Matrix: Water

Analysis Batch: 370470

Client Sample ID: Method Blank Prep Type: Total Recoverable Prep Batch: 370112

		IVID	IVIB						
	Analyte	Result	Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
	Iron	0.050	U	0.050	mg/L		02/09/15 10:32	02/11/15 02:01	1
-	Iron, Dissolved	0.050	U	0.050	mg/L		02/09/15 10:32	02/11/15 02:01	1
-	Manganese	0.010	U	0.010	mg/L		02/09/15 10:32	02/11/15 02:01	1
	Manganese, Dissolved	0.010	U	0.010	mg/L		02/09/15 10:32	02/11/15 02:01	1

Lab Sample ID: LCS 680-370112/2-A

Matrix: Water

Analysis Batch: 370470

Client Sample ID: Lab Control Sample Prep Type: Total Recoverable

randy old Editori. 070470							Prep	3atcn: 3/0112
	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Iron	5.00	4.82		mg/L		96	80 - 120	The second secon
Iron, Dissolved	5.00	4.82		mg/L		96	80 - 120	
Manganese	0.500	0.513		mg/L		103	80 - 120	
Manganese, Dissolved	0.500	0.513		mg/L		103	80 - 120	

TestAmerica Savannah LAB 3/24/15

Page 21 of 37

Client: Solutia Inc.

Project/Site: 1Q15 LTM GW Sampling - 1403345

TestAmerica Job ID: 680-109575-2

SDG: KPS137

Method: 310.1 - Alkalinity

Lab Sample ID: MB 680-369668/5

Matrix: Water

Analysis Batch: 369668

Client Sample ID: Method Blank

Prep Type: Total/NA

MB MB Analyte Result Qualifier RL **RL** Unit Prepared D Analyzed Dil Fac Alkalinity 5.0 Ū 5.0 mg/L 02/04/15 19:09 Carbon Dioxide, Free 5.0 U 5.0 mg/L 02/04/15 19:09

Lab Sample ID: LCS 680-369668/6

Matrix: Water

Analysis Batch: 369668

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Spike LCS LCS %Rec. Analyte Added Qualifier Result Unit D %Rec Limits Alkalinity 250 220 mg/L 88 80 - 120

Lab Sample ID: LCSD 680-369668/24

Matrix: Water

Analysis Batch: 369668

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Spike LCSD LCSD %Rec. RPD Analyte Added Result Qualifier Unit D %Rec Limits RPD Limit Alkalinity 250 218 mg/L 87 80 - 120

Method: 325.2 - Chloride

Lab Sample ID: MB 680-370556/23

Matrix: Water

Analysis Batch: 370556

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Type: Total/NA

Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac Chloride 1.0 U 1.0 mg/L 02/11/15 12:39

MB MB

Lab Sample ID: LCS 680-370556/13

Matrix: Water

Analysis Batch: 370556

Spike LCS LCS %Rec. Analyte Added Result Qualifier Unit %Rec Limits

Lab Sample ID: 680-109575-11 MS

Matrix: Water

Analysis Batch: 370556

Chloride 25.0 25.8 mg/L 103 85 - 115

Client Sample ID: GWE-5S-0215

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Spike Sample Sample MS MS %Rec. Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits

Chloride 29 25.0 53.1 mg/L 98 85 - 115

Matrix: Water

Analysis Batch: 370556

Lab Sample ID: 680-109575-11 MSD

Client Sample ID: GWE-5S-0215

Prep Type: Total/NA

Sample Sample Spike MSD MSD %Rec. RPD Analyte Result Qualifier Added %Rec Result Qualifier Unit Limits RPD Limit Chloride 29 25.0 53.5 mg/L 100 85 _ 115 30

> TestAmerica Savannah LAB 3/24/15

TestAmerica Job ID: 680-109575-2

SDG: KPS137

Lab Sample ID: MB 680-369648/13

Matrix: Water

Analysis Batch: 369648

Client Sample ID: Method Blank

Prep Type: Total/NA

мв мв

Analyte Result Qualifier RL Nitrate as N 0.050 U 0.050

MDL Unit Prepared Analyzed mg/L

Dil Fac 02/04/15 16:40

Lab Sample ID: LCS 680-369648/16

Matrix: Water

Analysis Batch: 369648

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Spike LCS LCS %Rec. Analyte Added Result Qualifier Unit %Rec Limits Nitrate as N 0.500 0.527 mg/L 105 75 - 125 Nitrate Nitrite as N 1.00 1.03 mg/L 103 90 - 110 Nitrite as N 0.500 0.505 mg/L 101 90 - 110

Method: 375.4 - Sulfate

Lab Sample ID: MB 680-370564/58

Matrix: Water

Analysis Batch: 370564

Client Sample ID: Method Blank

Prep Type: Total/NA

MB MB Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac Sulfate 5.0 U 5.0 mg/L 02/11/15 14:00

LCS LCS

20.5

Result Qualifier

Unit

mg/L

Lab Sample ID: LCS 680-370564/4

Matrix: Water

Analyte

Sulfate

Analysis Batch: 370564

Client Sample ID: Lab Control Sample Prep Type: Total/NA

%Rec. Limits

75 - 125

Lab Sample ID: 680-109575-11 MS

Matrix: Water

Analysis Batch: 370564

Client Sample ID: GWE-5S-0215

%Rec

102

Prep Type: Total/NA

Sample Sample Spike MS MS %Rec. Analyte Result Qualifier Added Result Qualifier Unit D %Rec Limits Sulfate 110 20.0 117 ma/L 50 75 - 125

Spike

Added

20.0

Lab Sample ID: 680-109575-11 MSD

Matrix: Water

Analysis Batch: 370564

Client Sample ID: GWE-5S-0215

Prep Type: Total/NA

Sample Sample Spike MSD MSD %Rec. RPD Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits RPD Limit Sulfate 110 20.0 119 4 mg/L 75 - 125 30

Method: 415.1 - DOC

Lab Sample ID: MB 160-175823/43

Matrix: Water

Analysis Batch: 175823

Client Sample ID: Method Blank

Prep Type: Dissolved

мв мв Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac Dissolved Organic Carbon 1.0 U 1.0 mg/L 02/24/15 17:05

TestAmerica Savannah

LAB 3/24/15

Page 23 of 37

Client: Solutia Inc.

Project/Site: 1Q15 LTM GW Sampling - 1403345

TestAmerica Job ID: 680-109575-2

SDG: KPS137

Lab Sample ID: LCS 160-175823/44

Matrix: Water

Analysis Batch: 175823

Client Sample ID: Lab Control Sample Prep Type: Dissolved

%Rec.

Analyte Added Result Qualifier Unit %Rec Limits Dissolved Organic Carbon 10.0 9.87 mg/L 99 90 - 110

Spike

LCS LCS

Lab Sample ID: 680-109575-14 MS

Matrix: Water

Analysis Batch: 175823

Client Sample ID: GWE-3D-F(0.2)-0215

Client Sample ID: Lab Control Sample

Client Sample ID: GWE-3D-0215

Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Dissolved

Sample Sample Spike MS MS %Rec. Analyte Result Qualifier Added Result Qualifier Unit D %Rec Limits Dissolved Organic Carbon 4.8 5.00 10.1 mg/L 82 - 132 106

Method: 415.1 - TOC

Lab Sample ID: MB 160-175822/4

Matrix: Water

Analysis Batch: 175822

Client Sample ID: Method Blank Prep Type: Total/NA

MB MB Result Qualifier RL MDL Unit

Analyte D Prepared Analyzed Dil Fac Total Organic Carbon 1.0 U 1.0 mg/L 02/24/15 12:28

Lab Sample ID: LCS 160-175822/5

Matrix: Water

Analysis Batch: 175822

Spike LCS LCS %Rec. Analyte Added Result Qualifier Unit D %Rec Limits Total Organic Carbon 10.0 9.67 mg/L 97 90 - 110

Lab Sample ID: 680-109575-13 MS

Matrix: Water

Analysis Batch: 175822

Sample Sample Spike MS MS %Rec. Analyte Result Qualifier Added Result Qualifier Unit D %Rec Limits Total Organic Carbon 4.9 5.00 9.98 mg/L 76 - 120 102

Page 24 of 37

LAB 3/24/15

QC Association Summary

Client: Solutia Inc.

Project/Site: 1Q15 LTM GW Sampling - 1403345

TestAmerica Job ID: 680-109575-2

SDG: KPS137

GC/MS VOA

Analysis	Batch:	370981
----------	--------	--------

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-109575-9	GWE-5M-0215	Total/NA	Water	8260B	
680-109575-11	GWE-5S-0215	Total/NA	Water	8260B	
680-109575-15	1Q15 LTM Trip Blank #2	Total/NA	Water	8260B	
LCS 680-370981/4	Lab Control Sample	Total/NA	Water	8260B	
LCSD 680-370981/5	Lab Control Sample Dup	Total/NA	Water	8260B	
MB 680-370981/9	Method Blank	Total/NA	Water	8260B	

Analysis Batch: 371036

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-109575-13	GWE-3D-0215	Total/NA	Water	8260B	
LCS 680-371036/4	Lab Control Sample	Total/NA	Water	8260B	
LCSD 680-371036/5	Lab Control Sample Dup	Total/NA	Water	8260B	
MB 680-371036/9	Method Blank	Total/NA	Water	8260B	

Analysis Batch: 371152

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-109575-7	GWE-5D-0215	Total/NA	Water	8260B	
LCS 680-371152/4	Lab Control Sample	Total/NA	Water	8260B	
LCSD 680-371152/5	Lab Control Sample Dup	Total/NA	Water	8260B	
MB 680-371152/8	Method Blank	Total/NA	Water	8260B	

GC VOA

Analysis Batch: 369841

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-109575-7	GWE-5D-0215	Total/NA	Water	RSK-175	
680-109575-9	GWE-5M-0215	Total/NA	Water	RSK-175	
680-109575-11	GWE-5S-0215	Total/NA	Water	RSK-175	
680-109575-13	GWE-3D-0215	Total/NA	Water	RSK-175	
LCS 680-369841/5	Lab Control Sample	Total/NA	Water	RSK-175	
LCSD 680-369841/6	Lab Control Sample Dup	Total/NA	Water	RSK-175	
MB 680-369841/7	Method Blank	Total/NA	Water	RSK-175	

Metals

Prep Batch: 370112

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-109575-7	GWE-5D-0215	Total Recoverable	Water	3005A	
680-109575-8	GWE-5D-F(0.2)-0215	Dissolved	Water	3005A	
680-109575-9	GWE-5M-0215	Total Recoverable	Water	3005A	
680-109575-10	GWE-5M-F(0.2)-0215	Dissolved	Water	3005A	
680-109575-11	GWE-5S-0215	Total Recoverable	Water	3005A	
680-109575-12	GWE-5S-F(0.2)-0215	Dissolved	Water	3005A	
680-109575-13	GWE-3D-0215	Total Recoverable	Water	3005A	
680-109575-14	GWE-3D-F(0.2)-0215	Dissolved	Water	3005A	
LCS 680-370112/2-A	Lab Control Sample	Total Recoverable	Water	3005A	
MB 680-370112/1-A	Method Blank	Total Recoverable	Water	3005A	

QC Association Summary

Client: Solutia Inc.

Project/Site: 1Q15 LTM GW Sampling - 1403345

TestAmerica Job ID: 680-109575-2

SDG: KPS137

Metals (Continued)

Analysis	Batch:	370470
----------	--------	--------

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-109575-7	GWE-5D-0215	Total Recoverable	Water	6010C	370112
680-109575-8	GWE-5D-F(0.2)-0215	Dissolved	Water	6010C	370112
680-109575-9	GWE-5M-0215	Total Recoverable	Water	6010C	370112
680-109575-10	GWE-5M-F(0.2)-0215	Dissolved	Water	6010C	370112
680-109575-11	GWE-5S-0215	Total Recoverable	Water	6010C	370112
680-109575-12	GWE-5S-F(0.2)-0215	Dissolved	Water	6010C	370112
680-109575-13	GWE-3D-0215	Total Recoverable	Water	6010C	370112
680-109575-14	GWE-3D-F(0.2)-0215	Dissolved	Water	6010C	370112
LCS 680-370112/2-A	Lab Control Sample	Total Recoverable	Water	6010C	370112
MB 680-370112/1-A	Method Blank	Total Recoverable	Water	6010C	370112

9

General Chemistry

Analysis Batch: 175822

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-109575-7	GWE-5D-0215	Total/NA	Water	415.1	
680-109575-9	GWE-5M-0215	Total/NA	Water	415.1	
680-109575-11	GWE-5S-0215	Total/NA	Water	415.1	
680-109575-13	GWE-3D-0215	Total/NA	Water	415.1	
680-109575-13 MS	GWE-3D-0215	Total/NA	Water	415.1	
LCS 160-175822/5	Lab Control Sample	Total/NA	Water	415.1	
MB 160-175822/4	Method Blank	Total/NA	Water	415.1	

Analysis Batch: 175823

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-109575-8	GWE-5D-F(0.2)-0215	Dissolved	Water	415.1	
680-109575-10	GWE-5M-F(0.2)-0215	Dissolved	Water	415.1	
680-109575-12	GWE-5S-F(0.2)-0215	Dissolved	Water	415.1	
680-109575-14	GWE-3D-F(0.2)-0215	Dissolved	Water	415.1	
680-109575-14 MS	GWE-3D-F(0.2)-0215	Dissolved	Water	415.1	
LCS 160-175823/44	Lab Control Sample	Dissolved	Water	415.1	
MB 160-175823/43	Method Blank	Dissolved	Water	415.1	

Analysis Batch: 369648

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-109575-7	GWE-5D-0215	Total/NA	Water	353.2	
680-109575-9	GWE-5M-0215	Total/NA	Water	353.2	
680-109575-11	GWE-5S-0215	Total/NA	Water	353.2	
680-109575-13	GWE-3D-0215	Total/NA	Water	353.2	
LCS 680-369648/16	Lab Control Sample	Total/NA	Water	353.2	
MB 680-369648/13	Method Blank	Total/NA	Water	353.2	

Analysis Batch: 369668

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-109575-7	GWE-5D-0215	Total/NA	Water	310.1	
680-109575-9	GWE-5M-0215	Total/NA	Water	310.1	
680-109575-11	GWE-5S-0215	Total/NA	Water	310.1	
680-109575-13	GWE-3D-0215	Total/NA	Water	310.1	
LCS 680-369668/6	Lab Control Sample	Total/NA	Water	310.1	
LCSD 680-369668/24	Lab Control Sample Dup	Total/NA	Water	310.1	

QC Association Summary

Client: Solutia Inc.

Project/Site: 1Q15 LTM GW Sampling - 1403345

TestAmerica Job ID: 680-109575-2

SDG: KPS137

General Chemistry (Continued)

Analysis	Batch:	369668 ((Continued)	
----------	--------	----------	-------------	--

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
MB 680-369668/5	Method Blank	Total/NA	Water	310.1	

Analysis Batch: 370556

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-109575-7	GWE-5D-0215	Total/NA	Water	325.2	
680-109575-9	GWE-5M-0215	Total/NA	Water	325.2	
680-109575-11	GWE-5S-0215	Total/NA	Water	325.2	
680-109575-11 MS	GWE-5S-0215	Total/NA	Water	325.2	
680-109575-11 MSD	GWE-5S-0215	Total/NA	Water	325.2	
680-109575-13	GWE-3D-0215	Total/NA	Water	325.2	
LCS 680-370556/13	Lab Control Sample	Total/NA	Water	325.2	
MB 680-370556/23	Method Blank	Total/NA	Water	325.2	

Analysis Batch: 370564

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-109575-7	GWE-5D-0215	Total/NA	Water	375.4	
680-109575-9	GWE-5M-0215	Total/NA	Water	375.4	
680-109575-11	GWE-5S-0215	Total/NA	Water	375.4	
680-109575-11 MS	GWE-5S-0215	Total/NA	Water	375.4	
680-109575-11 MSD	GWE-5S-0215	Total/NA	Water	375.4	
680-109575-13	GWE-3D-0215	Total/NA	Water	375.4	
LCS 680-370564/4	Lab Control Sample	Total/NA	Water	375.4	
MB 680-370564/58	Method Blank	Total/NA	Water	375.4	

Lab Chronicle

Client: Solutia Inc.

Project/Site: 1Q15 LTM GW Sampling - 1403345

TestAmerica Job ID: 680-109575-2

SDG: KPS137

Client Sample ID: GWE-5D-0215

Date Collected: 02/03/15 09:45 Date Received: 02/04/15 09:38 Lab Sample ID: 680-109575-7

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		2	371152	02/17/15 19:31	MMT	TAL SAV
Total/NA	Analysis	RSK-175		1	369841	02/06/15 11:29	AJMC	TAL SAV
Total Recoverable	Prep	3005A			370112	02/09/15 10:32	CRW	TAL SAV
Total Recoverable	Analysis	6010C		1	370470	02/11/15 02:56	всв	TAL SAV
Total/NA	Analysis	310.1		1	369668	02/04/15 19:57	LBH	TAL SAV
Total/NA	Analysis	325.2		2	370556	02/11/15 12:56	JME	TAL SAV
Total/NA	Analysis	353.2		1	369648	02/04/15 16:50	GRX	TAL SAV
Total/NA	Analysis	375.4		20	370564	02/11/15 13:44	JME	TAL SAV
Total/NA	Analysis	415.1		1	175822	02/24/15 13:51	JCB	TAL SL

Date Collected: 02/03/15 09:45 Date Received: 02/04/15 09:38

Matrix: Water

Prep Type	Batch Type	Batch Method	Run	Dilution Factor	Batch Number	Prepared or Analyzed	Analyst	Lab
Dissolved	Prep	3005A			370112	02/09/15 10:32	CRW	TAL SAV
Dissolved	Analysis	6010C		1	370470	02/11/15 03:01	всв	TAL SAV
Dissolved	Analysis	415.1		1	175823	02/24/15 18:32	JCB	TAL SL

Client Sample ID: GWE-5M-0215

Date Collected: 02/03/15 10:20

Date Received: 02/04/15 09:38

Lab Sample ID: 680-109575-9

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	370981	02/14/15 17:38	TF1	TAL SAV
Total/NA	Analysis	RSK-175		1	369841	02/06/15 11:42	AJMC	TAL SAV
Total Recoverable	Prep	3005A			370112	02/09/15 10:32	CRW	TAL SAV
Total Recoverable	Analysis	6010C		1	370470	02/11/15 03:15	ВСВ	TAL SAV
Total/NA	Analysis	310.1		1	369668	02/04/15 20:32	LBH	TAL SAV
Total/NA	Analysis	325.2		2	370556	02/11/15 12:56	JME	TAL SAV
Total/NA	Analysis	353.2		1	369648	02/04/15 16:54	GRX	TAL SAV
Total/NA	Analysis	375.4		5	370564	02/11/15 12:42	JME	TAL SAV
Total/NA	Analysis	415.1		1	175822	02/24/15 13:56	JCB	TAL SL

Client Sample ID: GWE-5M-F(0.2)-0215

Date Collected: 02/03/15 10:20 Date Received: 02/04/15 09:38 Lab Sample ID: 680-109575-10

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Dissolved	Prep	3005A			370112	02/09/15 10:32	CRW	TAL SAV
Dissolved	Analysis	6010C		1	370470	02/11/15 03:19	BCB	TAL SAV

TestAmerica Savannah

LAB 3|24|15

Lab Chronicle

Client: Solutia Inc.

Project/Site: 1Q15 LTM GW Sampling - 1403345

TestAmerica Job ID: 680-109575-2

SDG: KPS137

Client Sample ID: GWE-5M-F(0.2)-0215

Date Collected: 02/03/15 10:20 Date Received: 02/04/15 09:38 Lab Sample ID: 680-109575-10

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Dissolved	Analysis	415.1		1	175823	02/24/15 18:37	JCB	TAL SL

Client Sample ID: GWE-5S-0215

Date Collected: 02/03/15 10:52 Date Received: 02/04/15 09:38 Lab Sample ID: 680-109575-11

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	370981	02/14/15 17:58	TF1	TAL SAV
Total/NA	Analysis	RSK-175		1	369841	02/06/15 11:55	AJMC	TAL SAV
Total Recoverable	Prep	3005A			370112	02/09/15 10:32	CRW	TAL SAV
Total Recoverable	Analysis	6010C		1	370470	02/11/15 03:24	всв	TAL SAV
Total/NA	Analysis	310.1		1	369668	02/04/15 19:41	LBH	TAL SAV
Total/NA	Analysis	325.2		2	370556	02/11/15 12:29	JME	TAL SAV
Total/NA	Analysis	353.2		1	369648	02/04/15 16:55	GRX	TAL SAV
Total/NA	Analysis	375.4		5	370564	02/11/15 12:10	JME	TAL SAV
Total/NA	Analysis	415.1		1	175822	02/24/15 14:01	JCB	TAL SL

Client Sample ID: GWE-5S-F(0.2)-0215

Date Collected: 02/03/15 10:52

Date Received: 02/04/15 09:38

Lab Sample ID: 680-109575-12

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Dissolved	Prep	3005A			370112	02/09/15 10:32	CRW	TAL SAV
Dissolved	Analysis	6010C		1	370470	02/11/15 03:28	всв	TAL SAV
Dissolved	Analysis	415.1		1	175823	02/24/15 18:42	JCB	TAL SL

Client Sample ID: GWE-3D-0215

Date Collected: 02/03/15 12:10

Date Received: 02/04/15 09:38

Lab Sample ID: 680-109575-13

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		20	371036	02/15/15 15:04	TF1	TAL SAV
Total/NA	Analysis	RSK-175		1	369841	02/06/15 12:07	AJMC	TAL SAV
Total Recoverable	Prep	3005A			370112	02/09/15 10:32	CRW	TAL SAV
Total Recoverable	Analysis	6010C		1	370470	02/11/15 03:33	всв	TAL SAV
Total/NA	Analysis	310.1		1	369668	02/04/15 19:48	LBH	TAL SAV
Total/NA	Analysis	325.2		20	370556	02/11/15 14:01	JME	TAL SAV
Total/NA	Analysis	353.2		1	369648	02/04/15 16:56	GRX	TAL SAV
Total/NA	Analysis	375.4		10	370564	02/11/15 13:41	JME	TAL SAV
Total/NA	Analysis	415.1		1	175822	02/24/15 14:06	JCB	TAL SL

Lab Chronicle

Client: Solutia Inc.

Project/Site: 1Q15 LTM GW Sampling - 1403345

TestAmerica Job ID: 680-109575-2

SDG: KPS137

Client Sample ID: GWE-3D-F(0.2)-0215

Date Collected: 02/03/15 12:10 Date Received: 02/04/15 09:38 Lab Sample ID: 680-109575-14

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Dissolved	Prep	3005A			370112	02/09/15 10:32	CRW	TAL SAV
Dissolved	Analysis	6010C		1	370470	02/11/15 03:38	всв	TAL SAV
Dissolved	Analysis	415.1		1	175823	02/24/15 18:47	JCB	TAL SL

Client Sample ID: 1Q15 LTM Trip Blank #2

Date Collected: 02/03/15 00:00 Date Received: 02/04/15 09:38 Lab Sample ID: 680-109575-15

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared			
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab	
Total/NA	Analysis	8260B		1	370981	02/14/15 14:53	TF1	TAL SAV	_

Laboratory References:

TAL SAV = TestAmerica Savannah, 5102 LaRoche Avenue, Savannah, GA 31404, TEL (912)354-7858

TAL SL = TestAmerica St. Louis, 13715 Rider Trail North, Earth City, MO 63045, TEL (314)298-8566

Certification Summary

Client: Solutia Inc.

Project/Site: 1Q15 LTM GW Sampling - 1403345

TestAmerica Job ID: 680-109575-2

SDG: KPS137

Laboratory: TestAmerica Savannah

All certifications held by this laboratory are listed. Not all certifications are applicable to this report.

Authority	Program	EPA Region	Certification ID	Expiration Date
	AFCEE		SAVLAB	
A2LA	DoD ELAP		399.01	02-28-17
A2LA	ISO/IEC 17025		399.01	02-28-17
Alabama	State Program	4	41450	06-30-15
Arkansas DEQ	State Program	6	88-0692	01-31-16
California	State Program	9	2939	07-31-15
Colorado	State Program	8	N/A	12-31-15
Connecticut	State Program	1	PH-0161	03-31-15 *
Florida	NELAP	4	E87052	06-30-15
GA Dept. of Agriculture	State Program	4	N/A	06-12-17
Georgia	State Program	4	N/A	06-30-15
Georgia	State Program	4	803	06-30-15
Guam	State Program	9	09-005r	04-16-15
Hawaii	State Program	9	N/A	06-30-15
Illinois	NELAP	5	200022	11-30-15
Indiana	State Program	5	N/A	06-30-15
lowa	State Program	7	353	07-01-15
Kentucky (DW)	State Program	4	90084	12-31-15
Kentucky (UST)	State Program	4	18	06-30-15
Kentucky (WW)	State Program	4	90084	12-31-15
Louisiana	NELAP	6	30690	06-30-15
Louisiana (DW)	NELAP	6	LA150014	12-31-15
Maine	State Program	1	GA00006	09-24-16
Maryland	State Program	3	250	12-31-15
Massachusetts	State Program	1	M-GA006	06-30-15
Michigan	State Program	5	9925	06-30-15
Mississippi	State Program	4	N/A	06-30-15
Montana	State Program	8	CERT0081	12-31-15
Nebraska	State Program	7	TestAmerica-Savannah	06-30-15
New Jersey	NELAP	2	GA769	06-30-15
New Mexico	State Program	6	N/A	06-30-15
New York	NELAP	2	10842	03-31-15 *
North Carolina (DW)	State Program	4	13701	03-31-15
North Carolina (WW/SW)	State Program	4	269	
Oklahoma	State Program	6	9984	12-31-15
Pennsylvania	NELAP	3	68-00474	08-31-15
Puerto Rico	State Program	2	GA00006	06-30-15
South Carolina	State Program	4		12-31-15
Tennessee	State Program		98001 TN03064	06-30-15
Texas	NELAP	4	TN02961	06-30-15
JSDA	Federal	6	T104704185-14-7	11-30-15
√irginia	NELAP	2	SAV 3-04	06-11-17
Virginia Washington		3	460161	06-14-15
	State Program	10	C805	06-10-15
West Virginia (DW)	State Program	3	9950C	12-31-15
West Virginia DEP	State Program	3	094	06-30-15
Wisconsin	State Program	5	999819810	08-31-15
Wyoming	State Program	8	8TMS-L	06-30-15

Laboratory: TestAmerica St. Louis

All certifications held by this laboratory are listed. Not all certifications are applicable to this report.

^{*} Certification renewal pending - certification considered valid.

Certification Summary

Client: Solutia Inc.

Project/Site: 1Q15 LTM GW Sampling - 1403345

TestAmerica Job ID: 680-109575-2

SDG: KPS137

Laboratory: TestAmerica St. Louis (Continued)

All certifications held by this laboratory are listed. Not all certifications are applicable to this report.

Authority	Program	EPA Region	Certification ID	Expiration Date	
Alaska	State Program	10	MO00054	06-30-15	
California	NELAP	9	2886	03-31-15	
Connecticut	State Program	1	PH-0241	03-31-15	
Florida	NELAP	4	E87689	06-30-15	
Illinois	NELAP	5	200023	11-30-15	
lowa	State Program	7	373	12-01-16	
Kansas	NELAP	7	E-10236	03-31-15 *	
Kentucky (DW)	State Program	4	90125	12-31-15	
L-A-B	DoD ELAP		L2305	01-10-16	
Louisiana	NELAP	6	LA150017	12-31-16	
Maryland	State Program	3	310	09-30-15	
Missouri	State Program	7	780	06-30-15	
Nevada	State Program	9	MO000542013-1	07-31-15	
New Jersey	NELAP	2	MO002	06-30-15	
New Mexico	State Program	6		06-30-10 *	
New York	NELAP	2	11616	03-31-15 *	
North Dakota	State Program	8	R207	06-30-15	
NRC	NRC		24-24817-01	12-31-22	
Oklahoma	State Program	6	9997	08-31-15	
Pennsylvania	NELAP	3	68-00540	02-28-15 *	
South Carolina	State Program	4	85002001	06-30-15	
Texas	NELAP	6	T104704193-13-6	07-31-15	
USDA	Federal		P330-07-00122	01-09-17	
Utah	NELAP	8	MO000542013-5	07-31-15	
Virginia	NELAP	3	460230	06-14-15	
Washington	State Program	10	C592	08-30-15	
West Virginia DEP	State Program	3	381	08-31-15	

^{*} Certification renewal pending - certification considered valid.

Method Summary

Client: Solutia Inc.

Project/Site: 1Q15 LTM GW Sampling - 1403345

TestAmerica Job ID: 680-109575-2

SDG: KPS137

Method	Method Description	Protocol	Laboratory
8260B	Volatile Organic Compounds (GC/MS)	SW846	TAL SAV
RSK-175	Dissolved Gases (GC)	RSK	TAL SAV
6010C	Metals (ICP)	SW846	TAL SAV
310.1	Alkalinity	MCAWW	TAL SAV
325.2	Chloride	MCAWW	TAL SAV
353.2	Nitrogen, Nitrate-Nitrite	MCAWW	TAL SAV
375.4	Sulfate	MCAWW	TAL SAV
415.1	TOC	MCAWW	TAL SL
415.1	DOC	MCAWW	TAL SL

Protocol References:

MCAWW = "Methods For Chemical Analysis Of Water And Wastes", EPA-600/4-79-020, March 1983 And Subsequent Revisions.

RSK = Sample Prep And Calculations For Dissolved Gas Analysis In Water Samples Using A GC Headspace Equilibration Technique, RSKSOP-175, Rev. 0, 8/11/94, USEPA Research Lab

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL SAV = TestAmerica Savannah, 5102 LaRoche Avenue, Savannah, GA 31404, TEL (912)354-7858 TAL SL = TestAmerica St. Louis, 13715 Rider Trail North, Earth City, MO 63045, TEL (314)298-8566

12

Sample Summary

Client: Solutia Inc.

Project/Site: 1Q15 LTM GW Sampling - 1403345

TestAmerica Job ID: 680-109575-2

SDG: KPS137

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
680-109575-7	GWE-5D-0215	Water	02/03/15 09:45	02/04/15 09:38
680-109575-8	GWE-5D-F(0.2)-0215	Water	02/03/15 09:45	02/04/15 09:38
880-109575-9	GWE-5M-0215	Water	02/03/15 10:20	02/04/15 09:38
380-109575-10	GWE-5M-F(0.2)-0215	Water	02/03/15 10:20	02/04/15 09:38
380-109575-11	GWE-5S-0215	Water	02/03/15 10:52	02/04/15 09:38
380-109575-12	GWE-5S-F(0.2)-0215	Water	02/03/15 10:52	02/04/15 09:38
380-109575-13	GWE-3D-0215	Water	02/03/15 12:10	02/04/15 09:38
880-109575-14	GWE-3D-F(0.2)-0215	Water	02/03/15 12:10	02/04/15 09:38
80-109575-15	1Q15 LTM Trip Blank #2	Water	02/03/15 00:00	02/04/15 09:38

13

Chain of Custody Record

TestAmerica Savannah

5102 LaRoche Avenue

THE LEADER IN ENVIRONMENTAL TESTING **TOSTATIONS**

TestAmerica Laboratories, Inc. Sample Specific Notes: or Lab Use Only Nalk-in Client: ab Sampling: Job / SDG No. ਨ COC No: sampler: <u>m</u> Carrier: Date: 1.814 yd 200 gazojned Fe/Min by 6010C Lab Contact: Michele Kersey Gases by RSK 175 W Site Contact: Lori Bindner hloride by 325.2/Sulfate by 375.4 Other: RCRA Total Fe/Mn by 6010C (~) SVOCs by 8270 [2] (M 1Y) OSM I SM miohi99 NPDES Filtered Sample (Y/N) # of Cont. 1 WORKING DAYS Regulatory Program:

Dw Matrix 3 TAT if different from Below Standard Analysis Turnaround Time Project Manager: Amanda Derhake Type (C=Comp, G≕Grab) 1 day Sampi 1 week 2 days Fel/Fax: 636-724-9191 CALENDAR DAYS Sample Time 0145 Sample Date 2315 [5] roject Name: 1Q15 LTM GW Sampling-1403345 Sample Identification Phone Client Contact Site: Solutia WG Krummrich Facility SWE-50-0215 Savannah, GA 31404 phone 912.354.7858 fax Golder Associates Inc. 820 South Main Street St. Charles, MO 63301 (636) 724-9191 (636) 724-9323 0 # 42447936

N

N

1/)

1

"J" Ţ M

7

N Ţ

井2

Trip Blank

QIS

320-70.2)-0215

(4)

(4)

3

I

210

(V) N

(v)

1

Ţ

1052

ت

020

-0265

5WE-5M-FC0.2

SWE-55-0215

20215

325-50-F(0.2) 342E-5M-0215 -0215

12WE-55-F(0.2)

SUSC - 38 - 35 IS

	if samples are retained longer	Lab Archive for	30860)00	Corr'd: Therm ID No.	Company: Date/Time:	Company: Date/Time;
2 4 2 2 2 2 4 4 2 4 3 4 2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)	Return to Client S Disposal by Lab	35.0/60(338.06.1 B-51260)089	Cooler Temp. ('C); Obs'd:	Received by:	Received by:
		Unknown	089	~~	Date/Time: Rec	Date/Time: Rec
aOH, 6= Other	at any EPA Waste Codes for th	☐ Poison B		Custody Seal No.: 4 (43 13	Company:	Company:
reservation Used; 1=1ce, 2=HGl: 3=H2SO4; 4=HNG3; 5=NaOH;	Possible Hazard Identification: Are any samples from a listed EPA Hazardous Waste? Please List any EPA Waste Codes for the sample in the Comments Section if the lab is to dispose of the sample.	Skin Irritant	equirements & Comments:	Tes No (
Preservation Used, 1-1ce	Possible Hazard Identification: Are any samples from a listed EPA Comments Section if the lab is to d	Non-Hazard	Special Instructions/QC Requirements & Comments: VOC headspace upon sampling: Yea(No	Custody Seals Intact:	Relinguished by:	Refinquished by:

Form No. CA-C-WI-002, Rev. 4.3, dated 12/05/2013 Company

Date/Time: Date/

Received in Laboratory by

Date/Time:

Sompany Sompany 3/24/15

Relinquished by

Login Sample Receipt Checklist

Client: Solutia Inc.

Job Number: 680-109575-2

SDG Number: KPS137

List Source: TestAmerica Savannah

Login Number: 109575 List Number: 1

Creator: Banda, Christy S

Multiphasic samples are not present.

Residual Chlorine Checked.

Samples do not require splitting or compositing.

Croaton Banda, Omisty O			
Question	Answer	Comment	
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td> <td></td>	N/A		
The cooler's custody seal, if present, is intact.	True		
Sample custody seals, if present, are intact.	True		
The cooler or samples do not appear to have been compromised or tampered with.	True		
Samples were received on ice.	True		
Cooler Temperature is acceptable.	True		
Cooler Temperature is recorded.	True		
COC is present.	True		
COC is filled out in ink and legible.	True		
COC is filled out with all pertinent information.	True		
Is the Field Sampler's name present on COC?	N/A		
There are no discrepancies between the containers received and the COC.	True		
Samples are received within Holding Time.	True		
Sample containers have legible labels.	True		
Containers are not broken or leaking.	True		
Sample collection date/times are provided.	True		
Appropriate sample containers are used.	True		
Sample bottles are completely filled.	True		
Sample Preservation Verified.	True		
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True		
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True		

True

True

N/A

Login Sample Receipt Checklist

Client: Solutia Inc.

List Number: 2

Login Number: 109575

Job Number: 680-109575-2

SDG Number: KPS137

List Source: TestAmerica St. Louis List Creation: 02/05/15 02:48 PM

			LIST Creation: 02/05/15 02:48 PM
Creator: Clarke, Jill C			
Question	Answer	Comment	
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td> <td></td>	True		
The cooler's custody seal, if present, is intact.	True		
Sample custody seals, if present, are intact.	N/A		
The cooler or samples do not appear to have been compromised or tampered with.	True		
Samples were received on ice.	True		
Cooler Temperature is acceptable.	True		
Cooler Temperature is recorded.	True	3.1	
COC is present.	True		
COC is filled out in ink and legible.	True		
COC is filled out with all pertinent information.	True		
Is the Field Sampler's name present on COC?	False		
There are no discrepancies between the containers received and the COC.	True		
Samples are received within Holding Time.	True		
Sample containers have legible labels.	True		
Containers are not broken or leaking.	True		
Sample collection date/times are provided.	True		
Appropriate sample containers are used.	True		
Sample bottles are completely filled.	True		
Sample Preservation Verified.	True		
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True		
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A		
Multiphasic samples are not present.	True		
Samples do not require splitting or compositing.	True		
Residual Chlorine Checked.	N/A		

Level IV Data Validation Summary Solutia Inc., W.G. Krummrich, Sauget, Illinois 1Q15 Long-Term Monitoring Program

Company Name: Golder Associates
Project Name: WGK-1Q15 LTM
Reviewer: L. Bindner
Laboratory: TestAmerica
SDG#: KPS138

Matrix: Water

Project Manager: A. Derhake Project Number: 140-3345 Sample Date: February 2015

	vical Method: <u>VOC (8260B), Dissolved Gases (RSK-175), Metals (6010C), Alkalinity (310.1), Chl</u> e (353.2), Sulfate (375.4), TOC (415.1), and DOC (415.1)	loride (3	325.2)	, Nitrogen, Nitrate-
	ble Names: <u>GWE-1D-0215, GWE-1D-F(0.2)-0215, GWE-2D-0215, GWE-2D-F(0.2)-0215, and 1Q</u>	15 LTM	Trip E	3lank #3
Field	Information	YES	NO	NA
a)	Sampling dates noted?	\boxtimes		
b)	Does the laboratory narrative indicate deficiencies?	\boxtimes		
Со	mments:			
VC	C: Insufficient volume to perform MS/MSD associated with batch 370276.			
Dis	ssolved Gases: Insufficient volume to perform MS/MSD associated with batch 369841.			
<u>Me</u>	tals: No deficiencies noted.			
All	calinity: No deficiencies noted.			
<u>Ch</u>	loride: Samples GWE-1D-0215 and GWE-2D-0215 required dilution prior to analysis, reporting lin	nits wer	e adju	sted accordingly.
<u>Nit</u>	rate-Nitrite as Nitrogen: No deficiencies noted.			
<u>Su</u>	Ifate: Samples GWE-1D-0215 and GWE-2D-0215 required dilution prior to analysis, reporting limit	ts were	adjust	ted accordingly.
<u>TO</u>	C: No deficiencies noted.			
DC	OC: No deficiencies noted.			
Chaiı	n-of-Custody (COC)	YES	NO	NA
a)	Was the COC signed by both field and laboratory personnel?	\boxtimes		
b)	Were samples received in good condition?	\boxtimes		
Со	mments: Some samples were received at 0.9°C, outside the 4°C +/-2°C criteria.			
Gene	eral	YES	NO	NA
a)	Were hold times met for sample analysis?	\boxtimes		
b)	Were the correct preservatives used?	\boxtimes		
c)	Was the correct method used?	\boxtimes		
d)	Any sample dilutions noted?	\boxtimes		
Co	mments: Detections in diluted analysis were qualified.			

GC/N	IS Instrument Performance Check (IPC) and Internal Standards (IS)	YES	NO	NA
a)	IPC analyzed at the appropriate frequency and met the appropriate standards?	\boxtimes		
b)	Does BFB/DFTPP meet the ion abundance criteria?	\boxtimes		
c)	Internal Standard retention times and areas met appropriate criteria?	\boxtimes		
Co	omments: None			
Calik	prations	YES	NO	NA
a)	Initial calibration analyzed at the appropriate frequency and met the appropriate standards?	\boxtimes		
b)	Continuing calibrations analyzed at the appropriate frequency and met the appropriate standards	s?		
		\boxtimes		
c)	Initial calibration verifications and blanks analyzed at the appropriate frequency and met the appr	ropriate	stand	lards?
		\boxtimes		
d)	Continuing calibration verifications and blanks analyzed at the appropriate frequency and met the	e appro	oriate	standards
Com	ments: Analytes of interest met calibration standards.	\boxtimes		
Blar		YES	NO	NA
а)	Were blanks (trip, equipment, method) performed at required frequency?			
b)	Were analytes detected in any blanks?			
,		_	_	_
	mments: Equipment blanks were not submitted with SDG KPS138.			
Matr	ix Spike/Matrix Spike Duplicate (MS/MSD)	YES	NO —	NA —
a)	Was MS/MSD accuracy criteria met?			
b)	Was MS/MSD precision criteria met?		Ш	\boxtimes
Co	mments: MS/MSD not performed due to insufficient volume.			
Labo	oratory Control Sample (LCS)	YES	NO	NA
a)	LCS analyzed at the appropriate frequency and met appropriate standards?	\boxtimes		
Co	emments: None			
Surr	ogate (System Monitoring) Compounds	YES	NO	NA
a)	Surrogate compounds analyzed at the appropriate frequency and met appropriate standards?	\boxtimes		
Cor	mments: None			
Dupl	icates	YES	NO	NA
a)	Were field duplicates collected?			
b)	Was field duplicate precision criteria met?			\boxtimes
Cd	omments: Duplicate samples were not submitted with SDG KPS138.			

2

140-3345

April 2015

Additional Comments: None

Qualifications:

Quality Control Issue	Compound(s)	Qualifier	Samples Affected
Compounds analyzed at a dilution	Chloride and Sulfate	D	GWE-1D and GWE-2D

SDG KPS138

Sample Results from:

GWE-1D GWE-2D

..... LINKS Review your project results through Total Access Have a Question? Visit us at: www.testamericainc.com

TestAmerica

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc. TestAmerica Savannah 5102 LaRoche Avenue Savannah, GA 31404 Tel: (912)354-7858

TestAmerica Job ID: 680-109641-1 TestAmerica Sample Delivery Group: KPS138 Client Project/Site: 1Q15 LTM GW Sampling - 1403345

For: Solutia Inc. 575 Maryville Centre Dr. Saint Louis, Missouri 63141

Attn: Mr. Jerry Rinaldi

Michele Kusy

Authorized for release by: 2/25/2015 3:01:26 PM

Michele Kersey, Project Manager I (912)354-7858

michele.kersey@testamericainc.com

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Table of Contents

Cover Page	1
Table of Contents	2
Definitions	3
One a Main of	4
	6
Client Sample Results	7
	12
	13
	17
Chronicle	19
	21
	23
	24
	25
	26

Definitions/Glossary

Client: Solutia Inc.

Project/Site: 1Q15 LTM GW Sampling - 1403345

TestAmerica Job ID: 680-109641-1

SDG: KPS138

Qualifiers

GC/MS VOA

Qualifier

Qualifier Description

U Indicates the analyte was analyzed for but not detected.

GC VOA

Qualifier Description

U Indicates the analyte was analyzed for but not detected.

Metals

Qualifier Qualifier Description

U Indicates the analyte was analyzed for but not detected.

General Chemistry

Qualifier Description

U Indicates the analyte was analyzed for but not detected.

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.
--------------	---

Listed under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery
CFL Contains Free Liquid
CNF Contains no Free Liquid

DER Duplicate error ratio (normalized absolute difference)

Dil Fac Dilution Factor

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision level concentration
MDA Minimum detectable activity
EDL Estimated Detection Limit
MDC Minimum detectable concentration

MDL Method Detection Limit
ML Minimum Level (Dioxin)

NC Not Calculated

ND Not detected at the reporting limit (or MDL or EDL if shown)

PQL Practical Quantitation Limit

QC Quality Control
RER Relative error ratio

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)
TEQ Toxicity Equivalent Quotient (Dioxin)

Case Narrative

Client: Solutia Inc.

Project/Site: 1Q15 LTM GW Sampling - 1403345

TestAmerica Job ID: 680-109641-1

SDG: KPS138

Job ID: 680-109641-1

Laboratory: TestAmerica Savannah

Narrative

CASE NARRATIVE

Client: Solutia Inc.

Project: 1Q15 LTM GW Sampling - 1403345

Report Number: 680-109641-1

With the exceptions noted as flags or footnotes, standard analytical protocols were followed in the analysis of the samples and no problems were encountered or anomalies observed. In addition all laboratory quality control samples were within established control limits, with any exceptions noted below. Each sample was analyzed to achieve the lowest possible reporting limit within the constraints of the method. In the event of interference or analytes present at high concentrations, samples may be diluted. For diluted samples, the reporting limits are adjusted relative to the dilution required.

RECEIP1

The samples were received on 2/5/2015 9:18 AM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 0.9° C.

VOLATILE ORGANIC COMPOUNDS (GC-MS)

Samples GWE-2D-0215 (680-109641-1), GWE-1D-0215 (680-109641-3) and 1Q15 LTM Trip Blank #3 (680-109641-5) were analyzed for Volatile Organic Compounds (GC-MS) in accordance with EPA SW-846 Method 8260B. The samples were analyzed on 02/10/2015.

Insufficient sample volume was available to perform a matrix spike/matrix spike duplicate/sample duplicate (MS/MSD/DUP) associated with batch 370276.

No analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

DISSOLVED GASES

Samples GWE-2D-0215 (680-109641-1) and GWE-1D-0215 (680-109641-3) were analyzed for dissolved gases in accordance with RSK-175. The samples were analyzed on 02/06/2015.

Insufficient sample volume was available to perform a matrix spike/matrix spike duplicate (MS/MSD) associated with batch 369841.

No analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

METALS (ICP)

Samples GWE-2D-F(0.2)-0215 (680-109641-2) and GWE-1D-F(0.2)-0215 (680-109641-4) were analyzed for Metals (ICP) in accordance with EPA SW-846 Method 6010C. The samples were prepared on 02/10/2015 and analyzed on 02/11/2015.

No analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

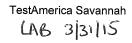
METALS (ICP)

Samples GWE-2D-0215 (680-109641-1) and GWE-1D-0215 (680-109641-3) were analyzed for Metals (ICP) in accordance with EPA SW-846 Method 6010C. The samples were prepared on 02/10/2015 and analyzed on 02/11/2015.

No analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

ALKALINITY

Samples GWE-2D-0215 (680-109641-1) and GWE-1D-0215 (680-109641-3) were analyzed for alkalinity in accordance with EPA Method 310.1. The samples were analyzed on 02/07/2015.


4

Case Narrative

Client: Solutia Inc.

Project/Site: 1Q15 LTM GW Sampling - 1403345

TestAmerica Job ID: 680-109641-1

SDG: KPS138

Job ID: 680-109641-1 (Continued)

Laboratory: TestAmerica Savannah (Continued)

No analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

CHLORIDE

Samples GWE-2D-0215 (680-109641-1) and GWE-1D-0215 (680-109641-3) were analyzed for Chloride in accordance with EPA Method 325.2. The samples were analyzed on 02/11/2015.

Samples GWE-2D-0215 (680-109641-1)[20X] and GWE-1D-0215 (680-109641-3)[2X] required dilution prior to analysis. The reporting limits have been adjusted accordingly.

No analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

NITRATE-NITRITE AS NITROGEN

Samples GWE-2D-0215 (680-109641-1) and GWE-1D-0215 (680-109641-3) were analyzed for nitrate-nitrite as nitrogen in accordance with EPA Method 353.2. The samples were analyzed on 02/05/2015.

No analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

SULFATE

Samples GWE-2D-0215 (680-109641-1) and GWE-1D-0215 (680-109641-3) were analyzed for sulfate in accordance with EPA Method 375.4. The samples were analyzed on 02/11/2015.

Samples GWE-2D-0215 (680-109641-1)[20X] and GWE-1D-0215 (680-109641-3)[10X] required dilution prior to analysis. The reporting limits have been adjusted accordingly.

No analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

TOTAL ORGANIC CARBON

Samples GWE-2D-0215 (680-109641-1) and GWE-1D-0215 (680-109641-3) were analyzed for total organic carbon in accordance with EPA Method 415.1. The samples were analyzed on 02/24/2015.

No analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

DISSOLVED ORGANIC CARBON (DOC)

Samples GWE-2D-F(0.2)-0215 (680-109641-2) and GWE-1D-F(0.2)-0215 (680-109641-4) were analyzed for Dissolved Organic Carbon (DOC) in accordance with EPA Method 415.1. The samples were analyzed on 02/24/2015.

No analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

4

5

Detection Summary

Client: Solutia Inc.

Project/Site: 1Q15 LTM GW Sampling - 1403345

TestAmerica Job ID: 680-109641-1

SDG: KPS138

Client Sample ID: GWE-2D-0215

Lab Sample ID: 680-109641-1

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Chlorobenzene	64		1.0		ug/L	1	_	8260B	Total/NA
Methane	19		0.58		ug/L	1		RSK-175	Total/NA
Iron	17		0.050		mg/L	1		6010C	Total Recoverable
Manganese	0.43		0.010		mg/L	1		6010C	Total
Chloride	610		20		mg/L	20		325.2	Recoverable Total/NA
Sulfate	580		100		mg/L	20		375.4	Total/NA
Total Organic Carbon	3.5		1.0		mg/L	1		415.1	Total/NA
Analyte	Result	Qualifier	RL	RL	Unit	Dil Fac	D	Method	Prep Type
Alkalinity	330		5.0		mg/L	1		310.1	Total/NA
Carbon Dioxide, Free	29		5.0		mg/L	1		310.1	Total/NA

Client Sample ID: GWE-2D-F(0.2)-0215

Lab Sample ID: 680-109641-2

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac) Method	Prep Type
Iron, Dissolved	17	0.050	mg/L	1	6010C	Dissolved
Manganese, Dissolved	0.42	0.010	mg/L	1	6010C	Dissolved
Dissolved Organic Carbon	6.8	1.0	mg/L	1	415.1	Dissolved

Client Sample ID: GWE-1D-0215

Lab Sample ID: 680-109641-3

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Methane	3.5		0.58		ug/L	1		RSK-175	Total/NA
Iron	18		0.050		mg/L	1		6010C	Total
Manganese	0.64		0.010		mg/L	1		6010C	Recoverable Total
Chloride			2.0					005.0	Recoverable
Sulfate	290		50		mg/L	2 10		325.2	Total/NA
Total Organic Carbon	5.3		1.0		mg/L mg/L	10		375.4 415.1	Total/NA Total/NA
Analyte	Result	Qualifier	RL	RL	Unit	Dil Fac	D	Method	Prep Type
Alkalinity	420		5.0		mg/L	1		310.1	Total/NA
Carbon Dioxide, Free	31		5.0		mg/L	1		310.1	Total/NA

Client Sample ID: GWE-1D-F(0.2)-0215

Lab Sample ID: 680-109641-4

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac D	Method	Prep Type
Iron, Dissolved	13	0.050	mg/L	1	6010C	Dissolved
Manganese, Dissolved	0.62	0.010	mg/L	1	6010C	Dissolved
Dissolved Organic Carbon	5.4	1.0	mg/L	1	415.1	Dissolved

Client Sample ID: 1Q15 LTM Trip Blank #3

Lab Sample ID: 680-109641-5

No Detections.

This Detection Summary does not include radiochemical test results.

TestAmerica Savannah

Client: Solutia Inc.

Project/Site: 1Q15 LTM GW Sampling - 1403345

TestAmerica Job ID: 680-109641-1

SDG: KPS138

Client Sample ID: GWE-2D-0215

Date Collected: 02/04/15 10:55 Date Received: 02/05/15 09:18 Lab Sample ID: 680-109641-1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	1.0	U	1.0		ug/L			02/10/15 20:09	
Chlorobenzene	64		1.0		ug/L			02/10/15 20:09	1
1,2-Dichlorobenzene	1.0	U	1.0		ug/L			02/10/15 20:09	1
1,3-Dichlorobenzene	1.0	U	1.0		ug/L			02/10/15 20:09	1
1,4-Dichlorobenzene	1.0	U	1.0		ug/L			02/10/15 20:09	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	97		70 - 130					02/10/15 20:09	1
1,2-Dichloroethane-d4 (Surr)	112		70 - 130					02/10/15 20:09	1
Dibromofluoromethane (Surr)	108		70 - 130					02/10/15 20:09	1
4-Bromofluorobenzene (Surr)	101		70 - 130					02/10/15 20:09	1
Method: RSK-175 - Dissolved	Gases (GC)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ethane	1.1	U	1.1		ug/L		-	02/06/15 12:41	1
Ethylene	1.0	U	1.0		ug/L			02/06/15 12:41	1
Methane	19		0.58		ug/L			02/06/15 12:41	1
Method: 6010C - Metals (ICP) -	Total Recoverab	ole							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Iron	17		0.050		mg/L		02/10/15 13:15	02/11/15 17:20	1
Manganese	0.43		0.010		mg/L		02/10/15 13:15	02/11/15 17:20	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	610	D	20		mg/L		•	02/11/15 14:01	20
Nitrate as N	0.050	U	0.050		mg/L			02/05/15 12:41	1
Sulfate	580	D	100		mg/L			02/11/15 13:41	20
Total Organic Carbon	3.5		1.0		mg/L			02/24/15 14:17	1
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Alkalinity	330		5.0		mg/L			02/07/15 18:09	1
Carbon Dioxide, Free	29		5.0		mg/L			02/07/15 18:09	1

Client: Solutia Inc.

Project/Site: 1Q15 LTM GW Sampling - 1403345

TestAmerica Job ID: 680-109641-1

SDG: KPS138

Client Sample ID: GWE-2D-F(0.2)-0215

Date Collected: 02/04/15 10:55 Date Received: 02/05/15 09:18 Lab Sample ID: 680-109641-2

Method: 6010C - Metals (ICP) - Diss	olved								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Iron, Dissolved	17		0.050	-	mg/L		02/10/15 13:15	02/11/15 17:34	1
Manganese, Dissolved	0.42		0.010		mg/L		02/10/15 13:15	02/11/15 17:34	1
General Chemistry - Dissolved									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Dissolved Organic Carbon	6.8		1.0		mg/L			02/24/15 18:57	

Client: Solutia Inc.

Project/Site: 1Q15 LTM GW Sampling - 1403345

TestAmerica Job ID: 680-109641-1

SDG: KPS138

Client Sample ID: GWE-1D-0215

Date Collected: 02/04/15 12:38 Date Received: 02/05/15 09:18 Lab Sample ID: 680-109641-3

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	1.0	U	1.0		ug/L			02/10/15 19:46	
Chlorobenzene	1.0	U	1.0		ug/L			02/10/15 19:46	-
1,2-Dichlorobenzene	1.0	U	1.0		ug/L			02/10/15 19:46	1
1,3-Dichlorobenzene	1.0	U	1.0		ug/L			02/10/15 19:46	
1,4-Dichlorobenzene	1.0	U	1.0		ug/L			02/10/15 19:46	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	99		70 - 130					02/10/15 19:46	
1,2-Dichloroethane-d4 (Surr)	112		70 - 130					02/10/15 19:46	1
Dibromofluoromethane (Surr)	110		70 - 130					02/10/15 19:46	1
4-Bromofluorobenzene (Surr)	105		70 - 130					02/10/15 19:46	1
Method: RSK-175 - Dissolved	Gases (GC)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ethane	1.1	U	1.1		ug/L			02/06/15 12:54	1
Ethylene	1.0	U	1.0		ug/L			02/06/15 12:54	1
Methane	3.5		0.58		ug/L			02/06/15 12:54	1
Method: 6010C - Metals (ICP) -	- Total Recoverab	ole							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Iron	18		0.050		mg/L		02/10/15 13:15	02/11/15 17:39	1
Manganese	0.64		0.010		mg/L		02/10/15 13:15	02/11/15 17:39	. 1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	72	D	2.0		mg/L		•	02/11/15 12:56	2
Nitrate as N	0.050	U	0.050		mg/L			02/05/15 12:43	1
Sulfate	290	D	50		mg/L			02/11/15 13:41	10
Total Organic Carbon	5.3		1.0		mg/L			02/24/15 14:22	1
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Alkalinity	420		5.0		mg/L			02/07/15 18:17	1
Carbon Dioxide, Free	31		5.0		mg/L			02/07/15 18:17	1

Client: Solutia Inc.

Project/Site: 1Q15 LTM GW Sampling - 1403345

TestAmerica Job ID: 680-109641-1

SDG: KPS138

Client Sample ID: GWE-1D-F(0.2)-0215

Date Collected: 02/04/15 12:38 Date Received: 02/05/15 09:18 Lab Sample ID: 680-109641-4

Method: 6010C - Metals (ICP) - Diss	olved								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Iron, Dissolved	13		0.050		mg/L		02/10/15 13:15	02/11/15 17:43	1
Manganese, Dissolved	0.62		0.010		mg/L		02/10/15 13:15	02/11/15 17:43	1
General Chemistry - Dissolved									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Dissolved Organic Carbon	5.4		1.0		mg/L			02/24/15 19:02	

Client: Solutia Inc.

Project/Site: 1Q15 LTM GW Sampling - 1403345

TestAmerica Job ID: 680-109641-1

SDG: KPS138

Client Sample ID: 1Q15 LTM Trip Blank #3

Date Collected: 02/04/15 00:00 Date Received: 02/05/15 09:18 Lab Sample ID: 680-109641-5

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	1.0	U	1.0		ug/L			02/10/15 16:45	1
Chlorobenzene	1.0	U	1.0		ug/L			02/10/15 16:45	1
1,2-Dichlorobenzene	1.0	U	1.0		ug/L			02/10/15 16:45	1
1,3-Dichlorobenzene	1.0	U	1.0		ug/L			02/10/15 16:45	1
1,4-Dichlorobenzene	1.0	U	1.0		ug/L			02/10/15 16:45	1

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	97	70 - 130	0:	2/10/15 16:45	1
1,2-Dichloroethane-d4 (Surr)	114	70 - 130	O:	2/10/15 16:45	1
Dibromofluoromethane (Surr)	108	70 - 130	O.	2/10/15 16:45	1
4-Bromofluorobenzene (Surr)	102	70 - 130	02	2/10/15 16:45	1

Surrogate Summary

Client: Solutia Inc.

Project/Site: 1Q15 LTM GW Sampling - 1403345

TestAmerica Job ID: 680-109641-1

SDG: KPS138

Method: 8260B - Volatile Organic Compounds (GC/MS)

Matrix: Water

Prep Type: Total/NA

TOL 12DCE		ırrogate Recovery (A	Acceptance Limits
TOL 12DCE	DDEM		
	DOLIN	BFB	
Lab Sample ID Client Sample ID (70-130) (70-130) (70-130)	(70-130)	
680-109641-1 GWE-2D-0215 97 112	108	101	
680-109641-3 GWE-1D-0215 99 112	110	105	
680-109641-5 1Q15 LTM Trip Blank #3 97 114	108	102	
.CS 680-370276/4 Lab Control Sample 98 124	117	97	
.CSD 680-370276/5 Lab Control Sample Dup 92 119	113	95	
MB 680-370276/8 Method Blank 96 122	110	102	

TOL = Toluene-d8 (Surr)

12DCE = 1,2-Dichloroethane-d4 (Surr)

DBFM = Dibromofluoromethane (Surr)

BFB = 4-Bromofluorobenzene (Surr)

TestAmerica Savannah

LAB 3/31/15

Client: Solutia Inc.

Project/Site: 1Q15 LTM GW Sampling - 1403345

TestAmerica Job ID: 680-109641-1

SDG: KPS138

Method: 8260B - Volatile Organic Compounds (GC/MS)

1.0 U

Lab Sample ID: MB 680-370276/8

Matrix: Water

Analyte

Benzene

Chlorobenzene

1,2-Dichlorobenzene

1,3-Dichlorobenzene

1,4-Dichlorobenzene

Analysis Batch: 370276

Client Sample ID: Method Blank Prep Type: Total/NA

02/10/15 12:06

мв мв Result Qualifier RL MDL Unit Prepared Analyzed Dil Fac 1.0 Ū 1.0 ug/L 02/10/15 12:06 1.0 U 1.0 ug/L 02/10/15 12:06 1.0 U 1.0 ug/L 02/10/15 12:06 1.0 U 1.0 ug/L 02/10/15 12:06

ug/L

	MB	MB				
Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	96		70 - 130		02/10/15 12:06	1
1,2-Dichloroethane-d4 (Surr)	122		70 - 130		02/10/15 12:06	1
Dibromofluoromethane (Surr)	110		70 - 130		02/10/15 12:06	1
4-Bromofluorobenzene (Surr)	102		70 - 130		02/10/15 12:06	1

1.0

Lab Sample ID: LCS 680-370276/4

Matrix: Water

Analysis Batch: 370276

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Spike LCS LCS %Rec. Analyte Added Result Qualifier Unit %Rec Limits Benzene 50.0 53.1 ug/L 106 73 - 131 Chlorobenzene 50.0 48.8 ug/L 80 - 120 98 1,2-Dichlorobenzene 50.0 49.0 ug/L 98 80 - 120 1,3-Dichlorobenzene 50.0 48.2 ug/L 96 80 - 120 1,4-Dichlorobenzene 50.0 47.9 ug/L 80 - 120

LCS LCS Surrogate %Recovery Qualifier Limits Toluene-d8 (Surr) 98 70 - 130 1,2-Dichloroethane-d4 (Surr) 124 70 - 130 Dibromofluoromethane (Surr) 117 70 - 130 4-Bromofluorobenzene (Surr) 97 70 - 130

Lab Sample ID: LCSD 680-370276/5

Matrix: Water

Analysis Batch: 370276

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	50.0	50.4		ug/L		101	73 - 131	5	30
Chlorobenzene	50.0	45.0		ug/L		90	80 - 120	8	20
1,2-Dichlorobenzene	50.0	47.7		ug/L		95	80 - 120	3	20
1,3-Dichlorobenzene	50.0	47.2		ug/L		94	80 - 120	2	20
1,4-Dichlorobenzene	50.0	47.0		ug/L		94	80 - 120	2	20

LCSD LCSD Surrogate %Recovery Qualifier Limits Toluene-d8 (Surr) 70 - 130 92 1,2-Dichloroethane-d4 (Surr) 119 70 - 130 Dibromofluoromethane (Surr) 113 70 - 130 4-Bromofluorobenzene (Surr) 95 70 - 130

TestAmerica Savannah
UAB 3)31 | 15

Client: Solutia Inc.

Project/Site: 1Q15 LTM GW Sampling - 1403345

TestAmerica Job ID: 680-109641-1

SDG: KPS138

Method: RSK-175 - Dissolved Gases (GC)

Lab Sample ID: MB 680-369841/7

Matrix: Water

Analysis Batch: 369841

Client Sample ID: Method Blank

Prep Type: Total/NA

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ethane	1.1	U	1.1		ug/L			02/06/15 10:42	1
Ethylene	1.0	U	1.0		ug/L			02/06/15 10:42	1
Methane	0.58	U	0.58		ug/L			02/06/15 10:42	1

Lab Sample ID: LCS 680-369841/5

Matrix: Water

Analysis Batch: 369841

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Ethane	288	280	***************************************	ug/L		97	75 - 125	
Ethylene	269	262		ug/L		97	75 ₋ 125	
Methane	154	148		ug/L		96	75 ₋ 125	

Lab Sample ID: LCSD 680-369841/6

Matrix: Water

Analysis Batch: 369841

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Ethane	288	284		ug/L		98	75 - 125	1	30
Ethylene	269	263		ug/L		98	75 - 125	0	30
Methane	154	151		ug/L		98	75 - 125	2	30

Method: 6010C - Metals (ICP)

Lab Sample ID: MB 680-370350/1-A

Matrix: Water

Analysis Batch: 370667

Client Sample ID: Method Blank Prep Type: Total Recoverable

Prep Batch: 370350

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Iron	0.050	U	0.050		mg/L		02/10/15 13:15	02/11/15 16:48	1
Iron, Dissolved	0.050	U	0.050		mg/L		02/10/15 13:15	02/11/15 16:48	1
Manganese	0.010	U	0.010		mg/L		02/10/15 13:15	02/11/15 16:48	1
Manganese, Dissolved	0.010	U	0.010		mg/L		02/10/15 13:15	02/11/15 16:48	1

Lab Sample ID: LCS 680-370350/2-A

Matrix: Water

Analysis Batch: 370667

Client Sample ID: Lab Control Sample

Prep Type: Total Recoverable

Prep Batch: 370350

-							r rop Daton, or	V
	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Iron	5.00	4.93		mg/L		99	80 - 120	
Iron, Dissolved	5.00	4.93		mg/L		99	80 - 120	
Manganese	0.500	0.526		mg/L		105	80 - 120	
Manganese, Dissolved	0.500	0.526		mg/L		105	80 - 120	

TestAmerica Savannah

Client: Solutia Inc.

Project/Site: 1Q15 LTM GW Sampling - 1403345

TestAmerica Job ID: 680-109641-1

SDG: KPS138

Method:	310.1	- Alka	linity
---------	-------	--------	--------

Lab Sample ID: MB 680-370058/5

Matrix: Water

Analysis Batch: 370058

Client Sample ID: Method Blank

Prep Type: Total/NA

	MB	MR			-				
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Alkalinity	5.0	U	5.0		mg/L			02/07/15 16:53	1
Carbon Dioxide, Free	5.0	U	5.0		mg/L			02/07/15 16:53	1

LCS LCS

Qualifier

Result

224

Spike

Added

250

Lab Sample ID: LCS 680-370058/6

Matrix: Water

Analyte

Alkalinity

Analysis Batch: 370058

Client Sample ID: Lab Control Sample Prep Type: Total/NA

80 - 120

%Rec. Unit %Rec Limits

Lab Sample ID: LCSD 680-370058/26

Matrix: Water

Analysis Batch: 370058

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

Spike LCSD LCSD %Rec. Analyte Added Result Qualifier %Rec Limits RPD Limit Alkalinity 250 219 mg/L 87 80 - 120 3

Method: 325.2 - Chloride

Lab Sample ID: MB 680-370556/23

Matrix: Water

Analysis Batch: 370556

Client Sample ID: Method Blank Prep Type: Total/NA

mg/L

Analyte Result Qualifier RL MDL Unit Prepared Analyzed Dil Fac Chloride 1.0 U 1.0 mg/L 02/11/15 12:39

мв мв

Lab Sample ID: LCS 680-370556/13

Matrix: Water

Analysis Batch: 370556

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Spike LCS LCS %Rec. Analyte Added Result Qualifier Unit %Rec Limits Chloride 25.0 25.8 mg/L 103 85 - 115

Method: 353.2 - Nitrogen, Nitrate-Nitrite

Lab Sample ID: MB 680-369724/13

Matrix: Water

Analysis Batch: 369724

Client Sample ID: Method Blank

Prep Type: Total/NA

		MB	MB							
-	Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
	Nitrate as N	0.050	U	0.050		mg/L	_		02/05/15 12:22	1

Lab Sample ID: LCS 680-369724/16

Matrix: Water

Analysis Batch: 369724

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Spike LCS LCS %Rec. Analyte Added Result Qualifier Unit Limits %Rec Nitrate as N 0.500 0.564 mg/L 113 75 _ 125 Nitrate Nitrite as N 1.00 1.06 mg/L 106 90 - 110

TestAmerica Savannah

LAB 3/31/15

Page 15 of 27

Client: Solutia Inc.

Project/Site: 1Q15 LTM GW Sampling - 1403345

TestAmerica Job ID: 680-109641-1

Client Sample ID: Lab Control Sample

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample

Client Sample ID: Lab Control Sample

Prep Type: Dissolved

Prep Type: Dissolved

Prep Type: Total/NA

SDG: KPS138

Method:	353.2	- Nitrogen,	Nitrate-Nitrite	(Continued)

Lab Sample ID: LCS 680-369724/16

Matrix: Water

Analysis Batch: 369724

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Spike LCS LCS %Rec. Analyte Added Result Qualifier Unit %Rec Limits Nitrite as N 0.500 0.500 mg/L 100 90 - 110

Method: 375.4 - Sulfate

Lab Sample ID: MB 680-370564/58

Matrix: Water

Analysis Batch: 370564

Client Sample ID: Method Blank Prep Type: Total/NA

 Analyte
 Result
 Qualifier
 RL
 MDL
 Unit
 D
 Prepared
 Analyzed
 Dil Fac

 Sulfate
 5.0
 U
 5.0
 mg/L
 02/11/15 14:00
 1

Lab Sample ID: LCS 680-370564/4

Matrix: Water

Analysis Batch: 370564

Spike LCS LCS %Rec. Analyte Added Result Qualifier Unit D %Rec Limits Sulfate 20.0 20.5 mg/L 102 75 - 125

Method: 415.1 - DOC

Lab Sample ID: MB 160-175823/43

Matrix: Water

Analysis Batch: 175823

 MB Analyte
 Result Dissolved Organic Carbon
 Result Result U
 V
 NL
 MDL MDL W
 Unit W
 D
 Prepared Prepared O2/24/15 17:05
 Analyzed Dil Fac D

Lab Sample ID: LCS 160-175823/44

Matrix: Water

Analysis Batch: 175823

Spike LCS LCS %Rec. Analyte Added Result Qualifier Unit %Rec Limits Dissolved Organic Carbon 10.0 9.87 mg/L 99 90 - 110

Method: 415.1 - TOC

Lab Sample ID: MB 160-175822/4

Matrix: Water

Analysis Batch: 175822

Client Sample ID: Method Blank Prep Type: Total/NA

 Analyte
 Result
 Qualifier
 RL
 MDL
 Unit
 D
 Prepared
 Analyzed
 Dil Fac

 Total Organic Carbon
 1.0
 U
 1.0
 mg/L
 02/24/15 12:28
 1

MB MB

Lab Sample ID: LCS 160-175822/5

Matrix: Water

Analysis Batch: 175822

 Analyte
 Added Organic Carbon
 Result 10.0
 Qualifier Post
 Unit Post
 D Post
 Resc Limits Post

TestAmerica Savannah

Prep Type: Total/NA

QC Association Summary

Client: Solutia Inc.

Project/Site: 1Q15 LTM GW Sampling - 1403345

TestAmerica Job ID: 680-109641-1

SDG: KPS138

GC/MS VOA

Analysis	Batch:	370276
----------	--------	--------

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-109641-1	GWE-2D-0215	Total/NA	Water	8260B	
680-109641-3	GWE-1D-0215	Total/NA	Water	8260B	
680-109641-5	1Q15 LTM Trip Blank #3	Total/NA	Water	8260B	
LCS 680-370276/4	Lab Control Sample	Total/NA	Water	8260B	
LCSD 680-370276/5	Lab Control Sample Dup	Total/NA	Water	8260B	
MB 680-370276/8	Method Blank	Total/NA	Water	8260B	

GC VOA

Analysis Batch: 369841

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method Prep Batch
680-109641-1	GWE-2D-0215	Total/NA	Water	RSK-175
680-109641-3	GWE-1D-0215	Total/NA	Water	RSK-175
LCS 680-369841/5	Lab Control Sample	Total/NA	Water	RSK-175
LCSD 680-369841/6	Lab Control Sample Dup	Total/NA	Water	RSK-175
MB 680-369841/7	Method Blank	Total/NA	Water	RSK-175

Metals

Prep Batch: 370350

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-109641-1	GWE-2D-0215	Total Recoverable	Water	3005A	
680-109641-2	GWE-2D-F(0.2)-0215	Dissolved	Water	3005A	
680-109641-3	GWE-1D-0215	Total Recoverable	Water	3005A	
680-109641-4	GWE-1D-F(0.2)-0215	Dissolved	Water	3005A	
LCS 680-370350/2-A	Lab Control Sample	Total Recoverable	Water	3005A	
MB 680-370350/1-A	Method Blank	Total Recoverable	Water	3005A	

Analysis Batch: 370667

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-109641-1	GWE-2D-0215	Total Recoverable	Water	6010C	370350
680-109641-2	GWE-2D-F(0.2)-0215	Dissolved	Water	6010C	370350
680-109641-3	GWE-1D-0215	Total Recoverable	Water	6010C	370350
680-109641-4	GWE-1D-F(0.2)-0215	Dissolved	Water	6010C	370350
LCS 680-370350/2-A	Lab Control Sample	Total Recoverable	Water	6010C	370350
MB 680-370350/1-A	Method Blank	Total Recoverable	Water	6010C	370350

General Chemistry

Analysis Batch: 175822

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-109641-1	GWE-2D-0215	Total/NA	Water	415.1	
680-109641-3	GWE-1D-0215	Total/NA	Water	415.1	
LCS 160-175822/5	Lab Control Sample	Total/NA	Water	415.1	
MB 160-175822/4	Method Blank	Total/NA	Water	415.1	

Analysis Batch: 175823

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-109641-2	GWE-2D-F(0.2)-0215	Dissolved	Water	415.1	-
680-109641-4	GWE-1D-F(0.2)-0215	Dissolved	Water	415.1	

TestAmerica Savannah LAB 3 31 15

Page 17 of 27

Q

QC Association Summary

Client: Solutia Inc.

Project/Site: 1Q15 LTM GW Sampling - 1403345

TestAmerica Job ID: 680-109641-1

SDG: KPS138

General Chemistry (Continued) Analysis Batch: 175823 (Continued) Lab Sample ID Client Sample ID Prep Type Matrix Method Prep Batch LCS 160-175823/44 Lab Control Sample Dissolved Water 415.1 MB 160-175823/43 Method Blank Dissolved Water 415.1 Analysis Batch: 369724 Lab Sample ID Client Sample ID Prep Type Matrix Method Prep Batch 680-109641-1 GWE-2D-0215 Total/NA Water 353.2 680-109641-3 GWE-1D-0215 Total/NA Water 353.2 LCS 680-369724/16 Lab Control Sample Total/NA Water 353.2 MB 680-369724/13 Method Blank Total/NA Water 353.2 Analysis Batch: 370058 Lab Sample ID Client Sample ID Prep Type Matrix Method Prep Batch 680-109641-1 GWE-2D-0215 Total/NA Water 310.1 680-109641-3 GWE-1D-0215 Total/NA Water 310.1 LCS 680-370058/6 Lab Control Sample Total/NA Water 310.1 LCSD 680-370058/26 Lab Control Sample Dup Total/NA Water 310.1 MB 680-370058/5 Method Blank Total/NA Water 310.1 Analysis Batch: 370556 Lab Sample ID Client Sample ID Prep Type Matrix Method Prep Batch 680-109641-1 GWE-2D-0215 Total/NA Water 325.2 680-109641-3 GWE-1D-0215 Total/NA Water 325.2 LCS 680-370556/13 Lab Control Sample Total/NA Water 325.2 MB 680-370556/23 Method Blank Total/NA Water 325.2 Analysis Batch: 370564 Lab Sample ID Client Sample ID Prep Type Matrix Method Prep Batch 680-109641-1 GWE-2D-0215 Total/NA Water 375.4 680-109641-3 GWE-1D-0215 Total/NA Water 375.4 LCS 680-370564/4 Lab Control Sample Total/NA Water 375.4 MB 680-370564/58 Method Blank Total/NA Water 375.4

Lab Chronicle

Client: Solutia Inc.

Project/Site: 1Q15 LTM GW Sampling - 1403345

TestAmerica Job ID: 680-109641-1

SDG: KPS138

Client Sample ID: GWE-2D-0215

Date Collected: 02/04/15 10:55 Date Received: 02/05/15 09:18 Lab Sample ID: 680-109641-1

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	370276	02/10/15 20:09	MMT	TAL SAV
Total/NA	Analysis	RSK-175		1	369841	02/06/15 12:41	AJMC	TAL SAV
Total Recoverable	Prep	3005A			370350	02/10/15 13:15	CRW	TAL SAV
Total Recoverable	Analysis	6010C		1	370667	02/11/15 17:20	ВСВ	TAL SAV
Total/NA	Analysis	310.1		1	370058	02/07/15 18:09	LBH	TAL SAV
Total/NA	Analysis	325.2		20	370556	02/11/15 14:01	JME	TAL SAV
Total/NA	Analysis	353.2		1	369724	02/05/15 12:41	GRX	TAL SAV
Total/NA	Analysis	375.4		20	370564	02/11/15 13:41	JME	TAL SAV
Total/NA	Analysis	415.1		1	175822	02/24/15 14:17	JCB	TAL SL

Client Sample ID: GWE-2D-F(0.2)-0215

Date Collected: 02/04/15 10:55 Date Received: 02/05/15 09:18 Lab Sample ID: 680-109641-2

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Dissolved	Prep	3005A			370350	02/10/15 13:15	CRW	TAL SAV
Dissolved	Analysis	6010C		1	370667	02/11/15 17:34	ВСВ	TAL SAV
Dissolved	Analysis	415.1		1	175823	02/24/15 18:57	JCB	TAL SL

Client Sample ID: GWE-1D-0215

Date Collected: 02/04/15 12:38 Date Received: 02/05/15 09:18 Lab Sample ID: 680-109641-3

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	370276	02/10/15 19:46	MMT	TAL SAV
Total/NA	Analysis	RSK-175		1	369841	02/06/15 12:54	AJMC	TAL SAV
Total Recoverable	Prep	3005A			370350	02/10/15 13:15	CRW	TAL SAV
Total Recoverable	Analysis	6010C		1	370667	02/11/15 17:39	всв	TAL SAV
Total/NA	Analysis	310.1		1	370058	02/07/15 18:17	LBH	TAL SAV
Total/NA	Analysis	325.2		2	370556	02/11/15 12:56	JME	TAL SAV
Total/NA	Analysis	353.2		1	369724	02/05/15 12:43	GRX	TAL SAV
Total/NA	Analysis	375.4		10	370564	02/11/15 13:41	JME	TAL SAV
Total/NA	Analysis	415.1		1	175822	02/24/15 14:22	JCB	TAL SL

Client Sample ID: GWE-1D-F(0.2)-0215

Date Collected: 02/04/15 12:38 Date Received: 02/05/15 09:18 Lab Sample ID: 680-109641-4

Matrix: Water

Prep Type	Batch	Batch	_	Dilution	Batch	Prepared		
	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Dissolved	Prep	3005A			370350	02/10/15 13:15	CRW	TAL SAV
Dissolved	Analysis	6010C		1	370667	02/11/15 17:43	BCB	TAL SAV

TestAmerica Savannah
LAB 3|31|15

Lab Chronicle

Client: Solutia Inc.

Project/Site: 1Q15 LTM GW Sampling - 1403345

TestAmerica Job ID: 680-109641-1

SDG: KPS138

Client Sample ID: GWE-1D-F(0.2)-0215

Date Collected: 02/04/15 12:38 Date Received: 02/05/15 09:18 Lab Sample ID: 680-109641-4

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Dissolved	Analysis	415.1		1	175823	02/24/15 19:02	JCB	TAL SL

Client Sample ID: 1Q15 LTM Trip Blank #3

Date Collected: 02/04/15 00:00

Date Received: 02/05/15 09:18

Lab Sample ID: 680-109641-5

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared			
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab	
Total/NA	Analysis	8260B		1	370276	02/10/15 16:45	MMT	TAL SAV	-

Laboratory References:

TAL SAV = TestAmerica Savannah, 5102 LaRoche Avenue, Savannah, GA 31404, TEL (912)354-7858 TAL SL = TestAmerica St. Louis, 13715 Rider Trail North, Earth City, MO 63045, TEL (314)298-8566

Certification Summary

Client: Solutia Inc.

Project/Site: 1Q15 LTM GW Sampling - 1403345

TestAmerica Job ID: 680-109641-1

SDG: KPS138

Laboratory: TestAmerica Savannah

All certifications held by this laboratory are listed. Not all certifications are applicable to this report.

Authority	Program	EPA Region	Certification ID	Expiration Date
	AFCEE		SAVLAB	
A2LA	DoD ELAP		399.01	02-28-17
A2LA	ISO/IEC 17025		399.01	02-28-17
Alabama	State Program	4	41450	06-30-15
Arkansas DEQ	State Program	6	88-0692	01-31-16
California	State Program	9	2939	07-31-15
Colorado	State Program	8	N/A	12-31-15
Connecticut	State Program	1	PH-0161	03-31-15 *
Florida	NELAP	4	E87052	06-30-15
GA Dept. of Agriculture	State Program	4	N/A	06-12-17
Georgia	State Program	4	N/A	06-30-15
Georgia	State Program	4	803	06-30-15
Guam	State Program	9	09-005r	04-16-15
Hawaii	State Program	9	N/A	06-30-15
Illinois	NELAP	5	200022	11-30-15
Indiana	State Program	5	N/A	06-30-15
lowa	State Program	7	353	07-01-15
Kentucky (DW)	State Program	4	90084	12-31-15
Kentucky (UST)	State Program	4	18	06-30-15
(entucky (WW)	State Program	4	90084	
ouisiana	NELAP	6	30690	12-31-15
ouisiana (DW)	NELAP	6		06-30-15
Maine	State Program	1	LA150014	12-31-15
Maryland	State Program	·	GA00006	09-24-16
lassachusetts		3	250	12-31-15
fichigan	State Program	1	M-GA006	06-30-15
fississippi	State Program	5	9925	06-30-15
	State Program	4	N/A	06-30-15
Montana Johranka	State Program	8	CERT0081	12-31-15
Nebraska	State Program	7	TestAmerica-Savannah	06-30-15
New Jersey	NELAP	2	GA769	06-30-15
lew Mexico	State Program	6	N/A	06-30-15
New York	NELAP	2	10842	03-31-15 *
North Carolina (DW)	State Program	4	13701	07-31-15
North Carolina (WW/SW)	State Program	4	269	12-31-15
Oklahoma	State Program	6	9984	08-31-15
Pennsylvania	NELAP	3	68-00474	06-30-15
Puerto Rico	State Program	2	GA00006	12-31-15
South Carolina	State Program	4	98001	06-30-15
Tennessee	State Program	4	TN02961	06-30-15
Texas	NELAP	6	T104704185-14-7	11-30-15
JSDA	Federal		SAV 3-04	06-11-17
/irginia	NELAP	3	460161	06-14-15
Vashington	State Program	10	C805	06-10-15
West Virginia (DW)	State Program	3	9950C	12-31-15
<i>N</i> est Virginia DEP	State Program	3	094	06-30-15
Misconsin	State Program	5	999819810	08-31-15
Nyoming	State Program	8	8TMS-L	06-30-15

Laboratory: TestAmerica St. Louis

All certifications held by this laboratory are listed. Not all certifications are applicable to this report.

TestAmerica Savannah

LAB 3 |31 | 15

^{*} Certification renewal pending - certification considered valid.

Certification Summary

Client: Solutia Inc.

Project/Site: 1Q15 LTM GW Sampling - 1403345

TestAmerica Job ID: 680-109641-1

SDG: KPS138

Laboratory: TestAmerica St. Louis (Continued)

All certifications held by this laboratory are listed. Not all certifications are applicable to this report.

Authority	Program	EPA Region	Certification ID	Expiration Date
Alaska	State Program	10	MO00054	06-30-15
California	NELAP	9	2886	03-31-15
Connecticut	State Program	1	PH-0241	03-31-15
Florida	NELAP	4	E87689	06-30-15
Illinois	NELAP	5	200023	11-30-15
lowa	State Program	7	373	12-01-16
Kansas	NELAP	7	E-10236	03-31-15 *
Kentucky (DW)	State Program	4	90125	12-31-15
L-A-B	DoD ELAP		L2305	01-10-16
Louisiana	NELAP	6	LA150017	12-31-16
Maryland	State Program	3	310	09-30-15
Missouri	State Program	7	780	06-30-15
Nevada	State Program	9	MO000542013-1	07-31-15
New Jersey	NELAP	2	MO002	06-30-15
New Mexico	State Program	6		06-30-10 *
New York	NELAP	2	11616	03-31-15 *
North Dakota	State Program	8	R207	06-30-15
NRC	NRC		24-24817-01	12-31-22
Oklahoma	State Program	6	9997	08-31-15
Pennsylvania	NELAP	3	68-00540	02-28-15 *
South Carolina	State Program	4	85002001	06-30-15
Texas	NELAP	6	T104704193-13-6	07-31-15
USDA	Federal		P330-07-00122	01-09-17
Utah	NELAP	8	MO000542013-5	07-31-15
Virginia	NELAP	3	460230	06-14-15
Washington	State Program	10	C592	08-30-15
West Virginia DEP	State Program	3	381	08-31-15

^{*} Certification renewal pending - certification considered valid.

Method Summary

Client: Solutia Inc.

Project/Site: 1Q15 LTM GW Sampling - 1403345

TestAmerica Job ID: 680-109641-1

SDG: KPS138

Method	Method Description	Protocol	Laboratory
8260B	Volatile Organic Compounds (GC/MS)	SW846	TAL SAV
RSK-175	Dissolved Gases (GC)	RSK	TAL SAV
6010C	Metals (ICP)	SW846	TAL SAV
310.1	Alkalinity	MCAWW	TAL SAV
325.2	Chloride	MCAVW	TAL SAV
53.2	Nitrogen, Nitrate-Nitrite	MCAWW	TAL SAV
375.4	Sulfate	MCAWW	TAL SAV
115.1	TOC	MCAWW	TAL SL
115.1	DOC	MCAVW	TAL SL

Protocol References:

MCAWW = "Methods For Chemical Analysis Of Water And Wastes", EPA-600/4-79-020, March 1983 And Subsequent Revisions.

RSK = Sample Prep And Calculations For Dissolved Gas Analysis In Water Samples Using A GC Headspace Equilibration Technique, RSKSOP-175, Rev. 0, 8/11/94, USEPA Research Lab

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL SAV = TestAmerica Savannah, 5102 LaRoche Avenue, Savannah, GA 31404, TEL (912)354-7858 TAL SL = TestAmerica St. Louis, 13715 Rider Trail North, Earth City, MO 63045, TEL (314)298-8566

12

Sample Summary

Client: Solutia Inc.

Project/Site: 1Q15 LTM GW Sampling - 1403345

TestAmerica Job ID: 680-109641-1

SDG: KPS138

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
680-109641-1	GWE-2D-0215	Water	02/04/15 10:55	02/05/15 09:18
680-109641-2	GWE-2D-F(0.2)-0215	Water	02/04/15 10:55	02/05/15 09:18
680-109641-3	GWE-1D-0215	Water	02/04/15 12:38	02/05/15 09:18
680-109641-4	GWE-1D-F(0.2)-0215	Water	02/04/15 12:38	02/05/15 09:18
680-109641-5	1Q15 LTM Trip Blank #3	Water	02/04/15 00:00	02/05/15 09:18

Chain of Custody Record

TestAmerica Savannah 5102 LaRoche Avenue

TestAmerica THE LEADER IN ENVIRONMENTAL TESTING

phone 912.354.7858 fax	Regulatory Program:	□ DW □	NPDES 🗸	RCRA	[] ≴	Other:	er:					a			Test	TestAmerica Laboratories, Inc.	oratories, In
Client Contact	Project Manager: Amanda Derhake	ərhake	Site C	Sonta	Site Contact: Lori Bindner	ori Bin	dner		۵	Date:	<u>'</u>	10			200	No:	
Golder Associates Inc.	Tel/Fax: 636-724-9191		LabC	onta	Lab Contact: Michele Kersey	ichele	Kers	e G	Ö.	Carrier:	ľ	Fed Ex	>		_	of i	cocs
820 South Main Street	Analysis Turnaround Time	nd Time	L		H		<i>t</i>		┝			-			Sampler:	i.	
St. Charles, MO 63301	CALENDAR DAYS	WORKING DAYS													For La	For Lab Use Only:	
(636) 724-9191 Phone	TAT if different from Below Standard	v Standard	(N												Walk-in	Walk-in Client:	
(636) 724-9323 FAX									010						Lab Sa	Lab Sampling:	
Project Name: 1Q15 LTM GW Sampling-1403345	1 week				100				9 4								
Site: Solutia WG Krummrich Facility	2 days					1.0			q uy						Job / SI	Job / SDG No.:	
P O # 42447936	1 day) S1							· · · · · · · · · · · · · · · · · · ·				
		61				OS P											
Sample Identification	Sample Sample (c=Comp. Date Time G=Grab)	, # of # of Matrix Cont.	Filter Otto	SVOC	VOCs Total	VIK/C	Chlori	Nitrate	TOC I	DOC						Sample Specific Notes:	c Notes:
6WE-2D-0215	2/4/15 105S G	3		,	~	_	5	7	8								
(3WE-2D-F(6,2)-0215	7	J								3							
GWE -10-0215	827/	h/		(4)	~	_	8	7	3								
-1D- i		7			-		-		,	W		_					
l	PERSONAL PROPERTY OF THE PERSONAL PROPERTY OF	2		1/1	N		-				<u> </u>						
				_			╂		-		 						
5 of				-	-		-	,	-		-		-				
27				-			 		-		+	_	_		<u> </u>		
- And A demand Andre the American Street of the Control of the Con				\vdash			<u> </u>		-		1						
				<u> </u>			-				,						
				1	<u> </u>		-		-			680-1	09641	Chain Thair	680-109641 Chain of Custody		
				╁	1	$oxed{T}$	-		-			_	-	-	_		
Preservation Used: 1= Ice, 2= HCl; 3= H2SO4; 4=HNO3; 5=NaOH; 6= Other_	5=NaOH; 6= Other				2 4		1	1,3	3.4	2							
Possible Hazard identification: Are any samples from a listed EPA Hazardous Waste? Please List any EPA Waste Comments Section if the lab is to dispose of the sample.		Codes for the sample in the	Sar	nple	Dispo	sal (4 fee	may k	se ass	esse	d if sa	ejd w	s are r	etaine	d longer t	Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)	
☑ Non-Hazard ☐ Flammable ☐ Skin Irritant	Poison B	Unknown		~	Return to Client	o Clen	LL.	\sum		Disposal by Lab	'Lab		₹	Archive for		_ Months	·
Special Instructions/QC Requirements & Comments: VOC headspace upon sampling: Yes/No																	
LAR																	
	Custody Seal No.: 41931	2)			Cooler		Temp.	('C): {	.p,sqð			Corr'd			Therm ID No.	No.:	
O Relinquished by:	Company: (SO (de K	Date/Time:	AS .	Received		9		Ž	U	<u>U.</u>	Company	įς, įς,	E	3	Date/Time:	1. 1. 1.	8/18
Relinquished by:	Company:	Date/Time:	Rec	Received by	/. Yq				1		Company:	i.j.			Date/Time	Э	
Relinquished by:	Company:	Date/Time:	Rec	eived	Received in Laboratory by:	borat	ory b	ا			Company:	any:			Date/Time:		00
													Form	%. C/	-C-WI-002	, Rev. 4.3, dat	Form No. CA-C-WI-002, Rev. 4.3, dated 12/05/2013

Login Sample Receipt Checklist

Client: Solutia Inc.

Job Number: 680-109641-1

SDG Number: KPS138

List Source: TestAmerica Savannah

Login Number: 109641

List Number: 1

Creator: Banda, Christy S

Question	Answer	Comment	
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td> <td></td>	N/A		
The cooler's custody seal, if present, is intact.	True		
Sample custody seals, if present, are intact.	True		
The cooler or samples do not appear to have been compromised or tampered with.	True		
Samples were received on ice.	True		
Cooler Temperature is acceptable.	True		
Cooler Temperature is recorded.	True		
COC is present.	True		
COC is filled out in ink and legible.	True		
COC is filled out with all pertinent information.	True		
s the Field Sampler's name present on COC?	N/A		
There are no discrepancies between the containers received and the COC.	True		
Samples are received within Holding Time.	True		
Sample containers have legible labels.	True		
Containers are not broken or leaking.	True		
Sample collection date/times are provided.	True		
Appropriate sample containers are used.	True		
Sample bottles are completely filled.	True		
Sample Preservation Verified.	True		
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True		
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True		
Multiphasic samples are not present.	True		
Samples do not require splitting or compositing.	True		
Residual Chlorine Checked.	N/A		

Login Sample Receipt Checklist

Client: Solutia Inc.

Job Number: 680-109641-1

SDG Number: KPS138

List Source: TestAmerica St. Louis

List Creation: 02/06/15 04:12 PM

Login Number: 109641

List Number: 2 Creator: Clarke, Jill C

Greator. Glarke, Jill C		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td>	True	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	(1.1)
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	False	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

Level IV Data Validation Summary Solutia Inc., W.G. Krummrich, Sauget, Illinois **1Q15 Long-Term Monitoring Program**

Company Name: <u>Golder Associates</u> **Project Name**: <u>WGK-1Q15 LTM</u>

Reviewer: L. Bindner Laboratory: TestAmerica SDG#: KPS139

Matrix: Water

Project Manager: A. Derhake Project Number: 140-3345 Sample Date: February 2015

140-3345

Analytical Method: VOC (8260B), SVOC (8270D), Dissolved Gases (RSK-175), Metals (6010C), Alkalinity (310.1), Chloride (325.2),

Nitrogen, Nitrate-Nitrite (353.2), Sulfate (375.4), TOC (415.1), and DOC (415.1)			
Sample Names: <u>BSA-MW-5D-0215, BSA-MW-5D-0215-MS, BSA-MW-5D-0215-MSD, BSA-MW-5D-F</u> BSA-MW-4D-F(0.2)-0215, BSA-MW-2D-0215, BSA-MW-2D-F(0.2)-0215, CPA-MW-4D-0215, CPA-MV	V-4D-F(0	0.2)-02	215, CPA-MW-3D-
0215, CPA-MW-3D-0215-AD, CPA-MW-3D-F(0.2)-0215, CPA-MW-2D-0215, CPA-MW-2D-0215-AD, (CPA-MW	/-2D-F	(0.2)-0215, 1Q15
_TM Trip Blank #4			
Field Information	YES		NA
a) Sampling dates noted?	\boxtimes		
b) Does the laboratory narrative indicate deficiencies?	\boxtimes		
Comments:			
VOC: Samples BSA-MW-5D-0215, BSA-MW-4D-0215, BSA-MW-2D-0215, CPA-MW-4D-0215, CPA-0215-AD, CPA-MW-2D-0215, and CPA-MW-2D-0215-AD, required dilution prior to analysis, reporting accordingly. Insufficient volume to perform MS/MSD associated with batch 3713166. MS/MSD recovery in batch 371318.	ng limits	were a	<u>adjusted</u>
SVOC: Sample BSA-MW-2D-0215 contained an allowable number of surrogate compounds outside CPA-MW-2D-0215-AD was outside control limits. Re-extraction and re-analysis was performed outs acceptable results. Insufficient volume to perform MS/MSD associated with batch 371177. The RPD outside control limits.	ide of ho	olding	time with
Dissolved Gases: Insufficient volume to perform MS/MSD associated with batch 370975 and batch	n 371304	<u>1.</u>	
Metals: No deficiencies noted.			
Alkalinity: No deficiencies noted.			
<u>Chloride:</u> Samples BSA-MW-5D-0215, BSA-MW-4D-0215, BSA-MW-2D-0215, CPA-MW-4D-0215, MW-2D-0215 required dilution prior to analysis, reporting limits were adjusted accordingly.	CPA-M\	N-3D-	0215, and CPA-
Nitrate-Nitrite as Nitrogen: No deficiencies noted.			
Sulfate: Sample BSA-MW-4D-0215 and CPA-MW-2D-0215 required dilution prior to analysis, report accordingly.	ting limit	s were	e adjusted
TOC: No deficiencies noted.			
DOC: No deficiencies noted.			
Chain-of-Custody (COC)	YES	NO	NA
a) Was the COC signed by both field and laboratory personnel?	\boxtimes		
b) Were samples received in good condition?	\boxtimes		
Comments: Samples were received at 1.5°C and 1.7°C, outside the 4°C +/-2°C criteria.			

		April 2015	2			140-3345
Gene	ral			YES	NO	NA
a)	Were hold times met for samp	ole analysis?		\boxtimes		
b)	Were the correct preservative	s used?		\boxtimes		
c)	Was the correct method used	?		\boxtimes		
d)	Any sample dilutions noted?			\boxtimes		
	mments: Detections in diluted ceptable limits. Qualification req		/OC samples were re-extracted and re-a	analyzed	ousio	de holding time with
GC/N	IS Instrument Performance C	heck (IPC) and Internal S	Standards (IS)	YES	NO	NA
a)	IPC analyzed at the appropria	ite frequency and met the	appropriate standards?	\boxtimes		
b)	Does BFB/DFTPP meet the ic	on abundance criteria?		\boxtimes		
c)	Internal Standard retention tin	nes and areas met approp	riate criteria?	\boxtimes		
Co	mments: None					
Calib	rations			YES	NO	NA
a)	Initial calibration analyzed at t	he appropriate frequency	and met the appropriate standards?	\boxtimes		
b)	Continuing calibrations analyz	ed at the appropriate freq	uency and met the appropriate standard	s?		
				\boxtimes		
c)	Initial calibration verifications	and blanks analyzed at the	e appropriate frequency and met the app	ropriate	stand	lards?
				\boxtimes		
d)	Continuing calibration verifica	tions and blanks analyzed	at the appropriate frequency and met th	e approp	oriate	standards?
C	omments: Analytes of interest	met calibration standards.				
Blan	ks			YES	NO	NA
a)	Were blanks (trip, equipment,	method) performed at req	uired frequency?		П	П
b)	Were analytes detected in any					
,	mments: Equipment blanks we		G KPS139.	_	_	_
				VEC	NO	NA
	x Spike/Matrix Spike Duplicat	` ,		YES	NO 🖂	_
a) b)	Was MS/MSD accuracy criter Was MS/MSD precision criter					
,	·					_
	mments: <u>MS/MSD recoveries i</u> nple BSA-MW-5D-0215. Qualifi		nzene failed recovery low for MS/MSD in	batch 3	71318	3, associated with
Labo	ratory Control Sample (LCS)			YES	NO	NA
a)	LCS analyzed at the appropris	ate frequency and met app	propriate standards?	\boxtimes		
Co	mments: None					
Surro	ogate (System Monitoring) Co	mpounds		YES	NO	NA
a)	Surrogate compounds analyze	ed at the appropriate frequ	ency and met appropriate standards?		\boxtimes	
	mments: Surrogate recoveries racted and re-analyzed outside		O were outside control limits for 5 of the 6 required.	S surroga	ates. S	Sample was re-

Dupli	cates	YES	NO	NA
a)	Were field duplicates collected?	\boxtimes		
b)	Was field duplicate precision criteria met?		\boxtimes	

Comments: <u>Duplicate samples CPA-MW-3D-0215-AD and CPA-MW-2D-0215-AD were submitted with SDG KPS139. 2-Chlorophenol was detected in sample but not in duplicate. Qualification required.</u>

Additional Comments: None

Qualifications:

Quality Control Issue	Compound(s)	Qualifier	Samples Affected
Compounds analyzed at a dilution	Benzene, Chlorobenzene, 1,2- Dichlorobenzene, 1,3- Dichlorobenzene, 1,4- Dichlorobenzene, Chloride, and Sulfate	D	BSA-MW-5D, BSA-MW-4D, BSA-MW-2D, CPA-MW-4D, CPA-MW-3D, CPA-MW-3D-AD, CPA-MW-2D, and CPA-MW-2D-AD
Duplicate outside RPD	2-Chlorophenol	J	CPA-MW-2D and CPA-MW-2D-AD
Re-extracted and re- analyzed outside hold time	2-Chlorophenol and 1,2,4- Trichlorobenzene	J	CPA-MW-2D-AD

SDG KPS139

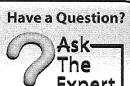
Sample Results from:

BSA-MW-2D

BSA-MW-4D

BSA-MW-5D

CPA-MW-2D


CPA-MW-3D

CPA-MW-4D

..... LINKS

Review your project results through

Total Access

Visit us at:

www.testamericainc.com

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited

parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager

TestAmerica

THE LEADER IN ENVIRONMENTAL TESTING

TestAmerica Laboratories, Inc.

TestAmerica Job ID: 680-109694-1

TestAmerica Savannah 5102 LaRoche Avenue Savannah, GA 31404 Tel: (912)354-7858

575 Maryville Centre Dr. Saint Louis, Missouri 63141

Attn: Mr. Jerry Rinaldi

Michael RKusey

(912)354-7858

Authorized for release by: 4/7/2015 10:04:15 AM

Michele Kersey, Project Manager I

michele.kersey@testamericainc.com

Revision: 1

Solutia Inc.

For:

ANALYTICAL REPORT

TestAmerica Sample Delivery Group: KPS139

Client Project/Site: 1Q15 LTM GW Sampling - 1403345

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

at the e-mail address or telephone number listed on this page.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Table of Contents

Cover Page	1
Table of Contents	
	6
Method Summary	7
Definitions	
	9
	13
	28
	30
	41
	46
	51
	53
	55

Case Narrative

Client: Solutia Inc.

Project/Site: 1Q15 LTM GW Sampling - 1403345

TestAmerica Job ID: 680-109694-1

SDG: KPS139

Job ID: 680-109694-1

Laboratory: TestAmerica Savannah

Narrative

CASE NARRATIVE

Client: Solutia Inc.

Project: 1Q15 LTM GW Sampling - 1403345

Report Number: 680-109694-1

With the exceptions noted as flags or footnotes, standard analytical protocols were followed in the analysis of the samples and no problems were encountered or anomalies observed. In addition all laboratory quality control samples were within established control limits, with any exceptions noted below. Each sample was analyzed to achieve the lowest possible reporting limit within the constraints of the method. In the event of interference or analytes present at high concentrations, samples may be diluted. For diluted samples, the reporting limits are adjusted relative to the dilution required.

RECEIPT

The samples were received on 2/6/2015 9:27 AM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperatures of the 2 coolers at receipt time were 1.5° C and 1.7° C.

NOTE: Report revised 04/07/15 to correct case narrative.

VOLATILE ORGANIC COMPOUNDS (GC-MS)

Samples BSA-MW-5D-0215 (680-109694-1), BSA-MW-4D-0215 (680-109694-3), BSA-MW-2D-0215 (680-109694-5), CPA-MW-4D-0215 (680-109694-7), CPA-MW-3D-0215 (680-109694-9), CPA-MW-3D-0215-AD (680-109694-11), CPA-MW-2D-0215 (680-109694-12), CPA-MW-2D-0215-AD (680-109694-14) and 1Q15 LTM Trip Blank #4 (680-109694-15) were analyzed for Volatile Organic Compounds (GC-MS) in accordance with EPA SW-846 Method 8260B. The samples were analyzed on 02/18/2015.

Benzene and Chlorobenzene exceeded the recovery criteria low for the MS and MSD of sample BSA-MW-5D-0215 (680-109694-1) in batch 680-371318.

Insufficient sample volume was available to perform a matrix spike/matrix spike duplicate (MS/MSD) associated with batch 371316.

The matrix spike / matrix spike duplicate (MS/MSD) recoveries for batch 371318 were outside control limits. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample (LCS) recovery was within acceptance limits.

Refer to the QC report for details.

Samples BSA-MW-5D-0215 (680-109694-1)[2X], BSA-MW-4D-0215 (680-109694-3)[20X], BSA-MW-2D-0215 (680-109694-5)[1000X], CPA-MW-4D-0215 (680-109694-7)[2X], CPA-MW-3D-0215 (680-109694-9)[100X], CPA-MW-3D-0215-AD (680-109694-11)[100X], CPA-MW-2D-0215 (680-109694-12)[250X] and CPA-MW-2D-0215-AD (680-109694-14)[250X] required dilution prior to analysis. The reporting limits have been adjusted accordingly.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

SEMIVOLATILE ORGANIC COMPOUNDS (AQUEOUS)

Samples BSA-MW-5D-0215 (680-109694-1), BSA-MW-4D-0215 (680-109694-3), BSA-MW-2D-0215 (680-109694-5), CPA-MW-4D-0215 (680-109694-7), CPA-MW-3D-0215 (680-109694-9), CPA-MW-3D-0215-AD (680-109694-11), CPA-MW-2D-0215 (680-109694-12) and CPA-MW-2D-0215-AD (680-109694-14) were analyzed for Semivolatile Organic Compounds (Aqueous) in accordance with EPA SW-846 Method 8270D. The samples were prepared on 02/09/2015 and 02/17/2015 and analyzed on 02/13/2015, 02/14/2015 and 02/18/2015.

The following sample(s) contained an allowable number of surrogate compounds outside limits: BSA-MW-2D-0215 (680-109694-5). These results have been reported and qualified.

Case Narrative

Client: Solutia Inc.

Project/Site: 1Q15 LTM GW Sampling - 1403345

TestAmerica Job ID: 680-109694-1 SDG: KPS139

Laboratory: TestAmerica Savannah (Continued)

Insufficient sample volume was available to perform a matrix spike/matrix spike duplicate/sample duplicate (MS/MSD/DUP) associated with batch 371177.

The %RPD of the laboratory control sample (LCS) and laboratory control standard duplicate (LCSD) for preparation batch 371177 recovered outside control limits for the following analytes: 1,4 dioxane and 4 chloroaniline.

Surrogate recovery for the following sample(s) was outside control limits: CPA-MW-2D-0215-AD (680-109694-14). Re-extraction and/or re-analysis was performed outside of holding time with acceptable results.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

DISSOLVED GASES

Samples BSA-MW-5D-0215 (680-109694-1), BSA-MW-4D-0215 (680-109694-3), BSA-MW-2D-0215 (680-109694-5), CPA-MW-4D-0215 (680-109694-7), CPA-MW-3D-0215 (680-109694-9) and CPA-MW-2D-0215 (680-109694-12) were analyzed for dissolved gases in accordance with RSK-175. The samples were analyzed on 02/11/2015, 02/16/2015 and 02/18/2015.

Insufficient sample volume was available to perform a matrix spike/matrix spike duplicate (MS/MSD) associated with batch 370975.

Insufficient sample volume was available to perform a matrix spike/matrix spike duplicate (MS/MSD) associated with batch 371304.

No analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

METALS (ICP)

Samples BSA-MW-5D-F(0.2)-0215 (680-109694-2), BSA-MW-4D-F(0.2)-0215 (680-109694-4), BSA-MW-2D-F(0.2)-0215 (680-109694-6), CPA-MW-4D-F(0.2)-0215 (680-109694-8), CPA-MW-3D-F(0.2)-0215 (680-109694-10) and CPA-MW-2D-F(0.2)-0215 (680-109694-13) were analyzed for Metals (ICP) in accordance with EPA SW-846 Method 6010C. The samples were prepared on 02/10/2015 and 02/11/2015 and 02/11/2015.

No analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

METALS (ICP)

Samples BSA-MW-5D-0215 (680-109694-1), BSA-MW-4D-0215 (680-109694-3), BSA-MW-2D-0215 (680-109694-5), CPA-MW-4D-0215 (680-109694-7), CPA-MW-3D-0215 (680-109694-7), CPA-MW-3D-0215 (680-109694-9) and CPA-MW-2D-0215 (680-109694-12) were analyzed for Metals (ICP) in accordance with EPA SW-846 Method 6010C. The samples were prepared on 02/10/2015 and 02/11/2015 and analyzed on 02/11/2015 and 02/11/2015.

No analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

ALKALINITY

Samples BSA-MW-5D-0215 (680-109694-1), BSA-MW-4D-0215 (680-109694-3), BSA-MW-2D-0215 (680-109694-5), CPA-MW-4D-0215 (680-109694-7), CPA-MW-3D-0215 (680-109694-9) and CPA-MW-2D-0215 (680-109694-12) were analyzed for alkalinity in accordance with EPA Method 310.1. The samples were analyzed on 02/07/2015 and 02/08/2015.

No analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

CHLORIDE

Samples BSA-MW-5D-0215 (680-109694-1), BSA-MW-4D-0215 (680-109694-3), BSA-MW-2D-0215 (680-109694-5), CPA-MW-4D-0215 (680-109694-7), CPA-MW-3D-0215 (680-109694-9) and CPA-MW-2D-0215 (680-109694-12) were analyzed for Chloride in accordance with EPA Method 325.2. The samples were analyzed on 02/11/2015.

Samples BSA-MW-5D-0215 (680-109694-1)[5X], BSA-MW-4D-0215 (680-109694-3)[2X], BSA-MW-2D-0215 (680-109694-5)[5X], CPA-MW-4D-0215 (680-109694-7)[5X], CPA-MW-3D-0215 (680-109694-9)[10X] and CPA-MW-2D-0215 (680-109694-12)[2X] required dilution prior to analysis. The reporting limits have been adjusted accordingly.

Case Narrative

Client: Solutia Inc.

Project/Site: 1Q15 LTM GW Sampling - 1403345

TestAmerica Job ID: 680-109694-1

SDG: KPS139

Job ID: 680-109694-1 (Continued)

Laboratory: TestAmerica Savannah (Continued)

No analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

NITRATE-NITRITE AS NITROGEN

Samples BSA-MW-5D-0215 (680-109694-1), BSA-MW-4D-0215 (680-109694-3), BSA-MW-2D-0215 (680-109694-5), CPA-MW-4D-0215 (680-109694-7), CPA-MW-3D-0215 (680-109694-9) and CPA-MW-2D-0215 (680-109694-12) were analyzed for nitrate-nitrite as nitrogen in accordance with EPA Method 353.2. The samples were analyzed on 02/06/2015.

No analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

SULFATE

Samples BSA-MW-5D-0215 (680-109694-1), BSA-MW-4D-0215 (680-109694-3), BSA-MW-2D-0215 (680-109694-5), CPA-MW-4D-0215 (680-109694-7), CPA-MW-3D-0215 (680-109694-9) and CPA-MW-2D-0215 (680-109694-12) were analyzed for sulfate in accordance with EPA Method 375.4. The samples were analyzed on 02/11/2015.

Samples BSA-MW-4D-0215 (680-109694-3)[5X] and CPA-MW-2D-0215 (680-109694-12)[2X] required dilution prior to analysis. The reporting limits have been adjusted accordingly.

No analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

TOTAL ORGANIC CARBON

Samples BSA-MW-5D-0215 (680-109694-1), BSA-MW-4D-0215 (680-109694-3), BSA-MW-2D-0215 (680-109694-5), CPA-MW-4D-0215 (680-109694-7), CPA-MW-3D-0215 (680-109694-9) and CPA-MW-2D-0215 (680-109694-12) were analyzed for total organic carbon in accordance with EPA Method 415.1. The samples were analyzed on 02/24/2015.

No analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

DISSOLVED ORGANIC CARBON (DOC)

Samples BSA-MW-5D-F(0.2)-0215 (680-109694-2), BSA-MW-4D-F(0.2)-0215 (680-109694-4), BSA-MW-2D-F(0.2)-0215 (680-109694-6), CPA-MW-4D-F(0.2)-0215 (680-109694-8), CPA-MW-3D-F(0.2)-0215 (680-109694-10) and CPA-MW-2D-F(0.2)-0215 (680-109694-13) were analyzed for Dissolved Organic Carbon (DOC) in accordance with EPA Method 415.1. The samples were analyzed on 02/24/2015.

No analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Sample Summary

Client: Solutia Inc.

Project/Site: 1Q15 LTM GW Sampling - 1403345

TestAmerica Job ID: 680-109694-1

SDG: KPS139

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
680-109694-1	BSA-MW-5D-0215	Water	02/05/15 10:25	02/06/15 09:27
680-109694-2	BSA-MW-5D-F(0.2)-0215	Water	02/05/15 10:25	02/06/15 09:27
680-109694-3	BSA-MW-4D-0215	Water	02/05/15 11:44	02/06/15 09:27
680-109694-4	BSA-MW-4D-F(0.2)-0215	Water	02/05/15 11:44	02/06/15 09:27
680-109694-5	BSA-MW-2D-0215	Water	02/05/15 13:25	02/06/15 09:27
680-109694-6	BSA-MW-2D-F(0.2)-0215	Water	02/05/15 13:25	02/06/15 09:27
680-109694-7	CPA-MW-4D-0215	Water	02/05/15 09:33	02/06/15 09:27
680-109694-8	CPA-MW-4D-F(0.2)-0215	Water	02/05/15 09:33	02/06/15 09:27
680-109694-9	CPA-MW-3D-0215	Water	02/05/15 12:45	02/06/15 09:27
680-109694-10	CPA-MW-3D-F(0.2)-0215	Water	02/05/15 12:45	02/06/15 09:27
680-109694-11	CPA-MW-3D-0215-AD	Water	02/05/15 12:45	02/06/15 09:27
680-109694-12	CPA-MW-2D-0215	Water	02/05/15 14:15	02/06/15 09:27
680-109694-13	CPA-MW-2D-F(0.2)-0215	Water	02/05/15 14:15	02/06/15 09:27
680-109694-14	CPA-MW-2D-0215-AD	Water	02/05/15 14:15	02/06/15 09:27
680-109694-15	1Q15 LTM Trip Blank #4	Water	02/05/15 00:00	02/06/15 09:27

Method Summary

Client: Solutia Inc.

Project/Site: 1Q15 LTM GW Sampling - 1403345

TestAmerica Job ID: 680-109694-1

SDG: KPS139

Method	Method Description	Protocol	Laboratory
8260B	Volatile Organic Compounds (GC/MS)	SW846	TAL SAV
8270D	Semivolatile Organic Compounds (GC/MS)	SW846	TAL SAV
RSK-175	Dissolved Gases (GC)	RSK	TAL SAV
6010C	Metals (ICP)	SW846	TAL SAV
310.1	Alkalinity	MCAWW	TAL SAV
325.2	Chloride	MCAWW	TAL SAV
353.2	Nitrogen, Nitrate-Nitrite	MCAWW	TAL SAV
375.4	Sulfate	MCAVW	TAL SAV
415.1	TOC	MCAVW	TAL SAV
415.1	DOC	MCAWW	TAL SL

Protocol References:

MCAWW = "Methods For Chemical Analysis Of Water And Wastes", EPA-600/4-79-020, March 1983 And Subsequent Revisions.

RSK = Sample Prep And Calculations For Dissolved Gas Analysis In Water Samples Using A GC Headspace Equilibration Technique, RSKSOP-175,

Rev. 0, 8/11/94, USEPA Research Lab

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL SAV = TestAmerica Savannah, 5102 LaRoche Avenue, Savannah, GA 31404, TEL (912)354-7858

TAL SL = TestAmerica St. Louis, 13715 Rider Trail North, Earth City, MO 63045, TEL (314)298-8566

5

TestAmerica Savannah

(AB 4/7/15

Definitions/Glossary

Client: Solutia Inc.

Project/Site: 1Q15 LTM GW Sampling - 1403345

TestAmerica Job ID: 680-109694-1

SDG: KPS139

	SDG. RFS 139
Qualifiers	
GC/MS VOA	
Qualifier	Qualifier Description
U	Indicates the analyte was analyzed for but not detected.
F1	MS and/or MSD Recovery exceeds the control limits
GC/MS Semi	VOA
Qualifier	Qualifier Description
U	Indicates the analyte was analyzed for but not detected.
X	Surrogate is outside control limits
Н	Sample was prepped or analyzed beyond the specified holding time
*	RPD of the LCS and LCSD exceeds the control limits
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.
GC VOA	
Qualifier	Qualifier Description
U	Indicates the analyte was analyzed for but not detected.
Metals	
Qualifier	Qualifier Description
U	Indicates the analyte was analyzed for but not detected.
General Cher	nistry
Qualifier	Qualifier Description
U	Indicates the analyte was analyzed for but not detected.

G	lo	SS	a	ry

TEF

TEQ

Toxicity Equivalent Factor (Dioxin)

Toxicity Equivalent Quotient (Dioxin)

Abbreviation	These commonly used abbreviations may or may not be present in this report.
n	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CNF	Contains no Free Liquid
DER	Duplicate error ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision level concentration
MDA	Minimum detectable activity
EDL	Estimated Detection Limit
MDC	Minimum detectable concentration
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
NC	Not Calculated
ND	Not detected at the reporting limit (or MDL or EDL if shown)
PQL	Practical Quantitation Limit
QC	Quality Control
RER	Relative error ratio
RL	Reporting Limit or Requested Limit (Radiochemistry)
RPD	Relative Percent Difference, a measure of the relative difference between two points

Detection Summary

Client: Solutia Inc.

Project/Site: 1Q15 LTM GW Sampling - 1403345

TestAmerica Job ID: 680-109694-1

SDG: KPS139

Client Sam	ple	ID:	BSA-N	IW-	-5D-0	21	5

Lab Sample ID: 680-109694-1

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Benzene	68		2.0		ug/L	2	_	8260B	Total/NA
Chlorobenzene	240		2.0		ug/L	2		8260B	Total/NA
Ethane	19		1.1		ug/L	1		RSK-175	Total/NA
Methane (TCD)	15000		390		ug/L	1		RSK-175	Total/NA
Iron	11		0.050		mg/L	1		6010C	Total
Manganese	0.27		0.010		mg/L	1		6010C	Recoverable Total Recoverable
Chloride	220		5.0		mg/L	5		325.2	Total/NA
Total Organic Carbon	9.0		1.0		mg/L	1		415.1	Total/NA
Analyte	Result	Qualifier	RL	RL	Unit	Dil Fac	D	Method	Prep Type
Alkalinity	1200		5.0		mg/L	1	_	310.1	Total/NA
Carbon Dioxide, Free	63		5.0		mg/L	1		310.1	Total/NA

Client Sample ID: BSA-MW-5D-F(0.2)-0215

Lab Sample ID: 680-109694-2

F****						
Analyte	Result Qualifier	RL	MDL Unit	Dil Fac	D Method	Prep Type
Iron, Dissolved	11	0.050	mg/L	1	6010C	Dissolved
Manganese, Dissolved	0.26	0.010	mg/L	1	6010C	Dissolved
Dissolved Organic Carbon	9.1	1.0	mg/L	1	415.1	Dissolved

Client Sample ID: BSA-MW-4D-0215

Lab Sample ID: 680-109694-3

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Benzene	30		20		ug/L	20	_	8260B	Total/NA
Chlorobenzene	2000		20		ug/L	20		8260B	Total/NA
1,4-Dichlorobenzene	70		20		ug/L	20		8260B	Total/NA
Ethane	3.0		1.1		ug/L	1		RSK-175	Total/NA
Methane	320		0.58		ug/L	1		RSK-175	Total/NA
Iron	6.7		0.050		mg/L	1		6010C	Total
Manganese	0.56		0.010		mg/L	1		6010C	Recoverable Total
Chloride	91		2.0		mg/L	2		325.2	Recoverable Total/NA
Sulfate	120		25		mg/L	5		375.4	Total/NA
Total Organic Carbon	5.2		1.0		mg/L	1		415.1	Total/NA
Analyte	Result	Qualifier	RL	RL	Unit	Dil Fac	D	Method	Prep Type
Alkalinity	440		5.0		mg/L			310.1	Total/NA
Carbon Dioxide, Free	29		5.0		mg/L	1		310.1	Total/NA

Client Sample ID: BSA-MW-4D-F(0.2)-0215

Lab Sample ID: 680-109694-4

planes.								
Analyte	Result Qua	alifier RL	MDL	Unit	Dil Fac	D I	Method	Prep Type
Iron, Dissolved	6.6	0.050		mg/L	1	- 6	5010C	Dissolved
Manganese, Dissolved	0.57	0.010		mg/L	1	(6010C	Dissolved
Dissolved Organic Carbon	4.8	1.0		mg/L	1	4	115.1	Dissolved

Client Sample ID: BSA-MW-2D-0215

Lab Sample ID: 680-109694-5

-	Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
	Benzene	64000		1000		ug/L	1000	-	8260B	Total/NA

This Detection Summary does not include radiochemical test results.

TestAmerica Savannah

LAB 4/7/15

Client: Solutia Inc.

Project/Site: 1Q15 LTM GW Sampling - 1403345

TestAmerica Job ID: 680-109694-1

SDG: KPS139

Client Sample ID: BSA-MW-2D-0215 (Continued)

Lab	Sample	ID:	680-109694-5

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Ethane	13		1.1		ug/L	1	_	RSK-175	Total/NA
Methane (TCD)	19000		390		ug/L	1		RSK-175	Total/NA
Iron	4.3		0.050		mg/L	1		6010C	Total
Manganese	0.64		0.010		mg/L	1		6010C	Recoverable Total Recoverable
Chloride	130		5.0		mg/L	5		325.2	Total/NA
Total Organic Carbon	11		1.0		mg/L	1		415.1	Total/NA
Analyte	Result	Qualifier	RL	RL	Unit	Dil Fac	D	Method	Prep Type
Alkalinity	620		5.0		mg/L	1	_	310.1	Total/NA
Carbon Dioxide, Free	36		5.0		mg/L	1		310.1	Total/NA

Client Sample ID: BSA-MW-2D-F(0.2)-0215

Lab Sample ID: 680-109694-6

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac	D Method	Prep Type
Iron, Dissolved	4.1	0.050	mg/L	1	6010C	Dissolved
Manganese, Dissolved	0.63	0.010	mg/L	1	6010C	Dissolved
Dissolved Organic Carbon	7.8	1.0	mg/L	1	415.1	Dissolved

Client Sample ID: CPA-MW-4D-0215

Lab Sample ID: 680-109694-7

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Chlorobenzene	230		2.0		ug/L	2		8260B	Total/NA
1,4-Dichlorobenzene	4.9		2.0		ug/L	2		8260B	Total/NA
4-Chloroaniline	130		21		ug/L	1		8270D	Total/NA
Ethane	18		1.1		ug/L	1		RSK-175	Total/NA
Methane (TCD)	14000		390		ug/L	1		RSK-175	Total/NA
Iron	15		0.050		mg/L	1		6010C	Total
									Recoverable
Manganese	0.39		0.010		mg/L	1		6010C	Total
									Recoverable
Chloride	210		5.0		mg/L	5		325.2	Total/NA
Total Organic Carbon	8.5		1.0		mg/L	1		415.1	Total/NA
Analyte	Result	Qualifier	RL	RL	Unit	Dil Fac	D	Method	Prep Type
Alkalinity	550		5.0		mg/L	1		310.1	Total/NA
Carbon Dioxide, Free	43		5.0		mg/L	1		310.1	Total/NA

Client Sample ID: CPA-MW-4D-F(0.2)-0215

Lab Sample ID: 680-109694-8

ţ									
Analyte	Result Qualifier	RL	MDL U	Init	Dil Fac	D	Method	Prep Type	
Iron, Dissolved	14	0.050	m	ng/L	1		6010C	Dissolved	
Manganese, Dissolved	0.38	0.010	m	ng/L	1		6010C	Dissolved	
Dissolved Organic Carbon	8.5	1.0	m	ng/L	1		415.1	Dissolved	

Client Sample ID: CPA-MW-3D-0215

Lab Sample ID: 680-109694-9

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac	O Method	Prep Type
Benzene	6000	100	ug/L	100	8260B	Total/NA
Chlorobenzene	160	100	ug/L	100	8260B	Total/NA
4-Chloroaniline	28	21	ug/L	1	8270D	Total/NA
Ethane	26	1.1	ug/L	1	RSK-175	Total/NA

This Detection Summary does not include radiochemical test results.

TestAmerica Savannah

LAB 4/7/15

Detection Summary

Client: Solutia Inc.

Project/Site: 1Q15 LTM GW Sampling - 1403345

Client Sample ID: CPA-MW-3D-0215 (Continued)

TestAmerica Job ID: 680-109694-1

SDG: KPS139

Total/NA

Client Sample ID: CPA-	MW-3D-0215 (Coi	ntinued)				Lai	S	ample ID:	680-109694-9
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Methane (TCD)	22000		390		ug/L	1	-	RSK-175	Total/NA
Iron	13		0.050		mg/L	1		6010C	Total
Manganese	0.76		0.010		mg/L	1		6010C	Recoverable

Recoverable Chloride 320 10 mg/L 10 325.2 Total/NA Total Organic Carbon 8.8 1.0 mg/L 415.1 Total/NA Analyte Result Qualifier RL RL Unit Dil Fac D Method Prep Type Alkalinity 560 5.0 mg/L 310.1 Total/NA Carbon Dioxide, Free 38 5.0

mg/L

Client Sample ID: CPA-MW-3D-F(0.2)-0215

Lab Sample ID: 680-109694-10

310.1

1

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac	D Method	Prep Type
Iron, Dissolved	12	0.050	mg/L		6010C	Dissolved
Manganese, Dissolved	0.75	0.010	mg/L	1	6010C	Dissolved
Dissolved Organic Carbon	9.4	1.0	mg/L	1	415.1	Dissolved

Client Sample ID: CPA-MW-3D-0215-AD

Lab Sample ID: 680-109694-11

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac	D Method	Prep Type
Benzene	5800	100	ug/L	100	8260B	Total/NA
Chlorobenzene	160	100	ug/L	100	8260B	Total/NA
4-Chloroaniline	28	22	ug/L	1	8270D	Total/NA

Client Sample ID: CPA-MW-2D-0215

Lab Sample ID: 680-109694-12

Result (Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
31000		250		ug/L				Total/NA
260		250		ug/L				Total/NA
300		250		-				Total/NA
8700		250						Total/NA
35		11		-				Total/NA
3.8		1.1		-	. 1			Total/NA
890		390			1			Total/NA
8.7		0.050		mg/L	1		6010C	Total
0.43		0.010		mg/L	1		6010C	Recoverable Total
55		2.0		ma/L			325.2	Recoverable Total/NA
56		10		-				Total/NA
8.1		1.0		-	1			Total/NA
Result (Qualifier	RL	RL	-	Dil Fac	D		Prep Type
420		5.0		mg/L		_		Total/NA
21		5.0		mg/L	1		310.1	Total/NA
	31000 260 300 8700 35 3.8 890 8.7 0.43 55 56 8.1 Result 0	260 300 8700 35 3.8 890 8.7 0.43 55 56 8.1 Result Qualifier	31000 250 260 250 300 250 8700 250 35 11 3.8 1.1 890 390 8.7 0.050 0.43 0.010 55 2.0 56 10 8.1 1.0 Result Qualifier RL 420 5.0	31000 250 260 250 300 250 8700 250 35 11 3.8 1.1 890 390 8.7 0.050 0.43 0.010 55 2.0 56 10 8.1 1.0 Result Qualifier RL RL 420 5.0	31000 250 ug/L 260 250 ug/L 300 250 ug/L 8700 250 ug/L 35 11 ug/L 3.8 1.1 ug/L 890 390 ug/L 8.7 0.050 mg/L 0.43 0.010 mg/L 55 2.0 mg/L 56 10 mg/L 8.1 1.0 mg/L Result RL RL Unit 420 5.0 mg/L	31000 250 ug/L 250 260 250 ug/L 250 300 250 ug/L 250 8700 250 ug/L 250 35 11 ug/L 1 3.8 1.1 ug/L 1 890 390 ug/L 1 8.7 0.050 mg/L 1 0.43 0.010 mg/L 1 55 2.0 mg/L 1 56 10 mg/L 2 8.1 1.0 mg/L 1 Result Qualifier RL RL Unit Dil Fac 420 5.0 mg/L 1	Result Qualifier RL MDL Unit Dil Fac ug/L D 31000 250 ug/L 250 250 ug/L 250	31000 250 ug/L 250 8260B 260 250 ug/L 250 8260B 300 250 ug/L 250 8260B 8700 250 ug/L 250 8260B 35 11 ug/L 1 8270D 3.8 1.1 ug/L 1 RSK-175 890 390 ug/L 1 RSK-175 8.7 0.050 mg/L 1 6010C 0.43 0.010 mg/L 1 6010C 0.43 0.010 mg/L 2 325.2 56 10 mg/L 2 375.4 8.1 1.0 mg/L 1 415.1 Result Qualifier RL RL Unit Dil Fac D Method 310.1 32.2 32

Client Sample ID: CPA-MW-2D-F(0.2)-0215

Lab Sample ID: 680-109694-13

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Iron, Dissolved	8.8		0.050		mg/L	1		6010C	Dissolved
Manganese, Dissolved	0.45		0.010		mg/L	1		6010C	Dissolved

This Detection Summary does not include radiochemical test results.

TestAmerica Savannah LAB 4/7/15

Detection Summary

Client: Solutia Inc.

Project/Site: 1Q15 LTM GW Sampling - 1403345

TestAmerica Job ID: 680-109694-1

SDG: KPS139

Client Sample ID: CPA-MW-2D-F(0.2)-0215 (Continued)

Lab Sample ID: 680-109694-13

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Dissolved Organic Carbon	7.5		1.0		mg/L	1	_	415.1	Dissolved

Client Sample ID: CPA-MW-2D-0215-AD

Lab Sample ID: 680-109694-14

Analyte	Result Qualifie	r RL	MDL Unit	Dil Fac D	Method	Prep Type
Chlorobenzene	32000	250	ug/L	250	8260B	Total/NA
1,2-Dichlorobenzene	300	250	ug/L	250	8260B	Total/NA
1,3-Dichlorobenzene	290	250	ug/L	250	8260B	Total/NA
1,4-Dichlorobenzene	9700	250	ug/L	250	8260B	Total/NA

Client Sample ID: 1Q15 LTM Trip Blank #4

Lab Sample ID: 680-109694-15

No Detections.

Client: Solutia Inc.

Project/Site: 1Q15 LTM GW Sampling - 1403345

TestAmerica Job ID: 680-109694-1

SDG: KPS139

Client Sample ID: BSA-MW-5D-0215

Date Collected: 02/05/15 10:25 Date Received: 02/06/15 09:27 Lab Sample ID: 680-109694-1

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	68	D	2.0		ug/L			02/18/15 16:30	2
Chlorobenzene	240	D	2.0		ug/L			02/18/15 16:30	2
1,2-Dichlorobenzene	2.0	U	2.0		ug/L			02/18/15 16:30	2
1,3-Dichlorobenzene	2.0	U	2.0		ug/L			02/18/15 16:30	2
1,4-Dichlorobenzene	2.0	U	2.0		ug/L			02/18/15 16:30	2
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	115		70 - 130					02/18/15 16:30	
1,2-Dichloroethane-d4 (Surr)	115		70 - 130					02/18/15 16:30	2
Dibromofluoromethane (Surr)	119		70 - 130					02/18/15 16:30	2
4-Bromofluorobenzene (Surr)	107		70 - 130					02/18/15 16:30	2
Method: 8270D - Semivolatile C	rganic Compou	nds (GC/MS	S)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2-Chlorophenol	11	U	11		ug/L		02/09/15 16:25	02/13/15 20:32	1
1,4-Dioxane	11	U	11		ug/L		02/09/15 16:25	02/13/15 20:32	1
1,2,4-Trichlorobenzene	11	U	11		ug/L		02/09/15 16:25	02/13/15 20:32	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	53		32 - 114				02/09/15 16:25	02/13/15 20:32	1
2-Fluorophenol	39		26 - 107				02/09/15 16:25	02/13/15 20:32	1
Nitrobenzene-d5	52		30 - 117				02/09/15 16:25	02/13/15 20:32	1
Phenol-d5	42		25 - 109				02/09/15 16:25	02/13/15 20:32	
Terphenyl-d14	60		10 - 132				02/09/15 16:25	02/13/15 20:32	1
2,4,6-Tribromophenol	56		34 - 140				02/09/15 16:25	02/13/15 20:32	1
Method: RSK-175 - Dissolved G	Gases (GC)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ethane	19		1.1		ug/L			02/18/15 14:09	1
Ethylene	1.0	U	1.0		ug/L			02/18/15 14:09	1
Methane (TCD)	15000		390		ug/L			02/16/15 13:47	1
Method: 6010C - Metals (ICP) -	Total Recoverab	le							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Iron	11		0.050		mg/L		02/10/15 13:15	02/11/15 17:52	1
Manganese	0.27		0.010		mg/L		02/10/15 13:15	02/11/15 17:52	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	220	D	5.0	-	mg/L			02/11/15 12:52	5
Nitrate as N	0.050	U	0.050		mg/L			02/06/15 12:29	1
Sulfate	5.0	U	5.0		mg/L			02/11/15 12:01	1
Total Organic Carbon	9.0		1.0		mg/L			02/24/15 14:27	1
Analyte		Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Alkalinity	1200		5.0		mg/L			02/07/15 18:31	1
Carbon Dioxide, Free	63		5.0		mg/L			02/07/15 18:31	1

Client: Solutia Inc.

Project/Site: 1Q15 LTM GW Sampling - 1403345

TestAmerica Job ID: 680-109694-1

SDG: KPS139

Client Sample ID: BSA-MW-5D-F(0.2)-0215

Date Collected: 02/05/15 10:25 Date Received: 02/06/15 09:27 Lab Sample ID: 680-109694-2

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Iron, Dissolved	11		0.050		mg/L		02/10/15 13:15	02/11/15 17:57	1
Manganese, Dissolved	0.26		0.010		mg/L		02/10/15 13:15	02/11/15 17:57	1
General Chemistry - Dissolved									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Dissolved Organic Carbon	9.1		1.0		mg/L		***************************************	02/24/15 19:30	1

8

Client: Solutia Inc.

Project/Site: 1Q15 LTM GW Sampling - 1403345

TestAmerica Job ID: 680-109694-1

SDG: KPS139

Client Sample ID: BSA-MW-4D-0215

Date Collected: 02/05/15 11:44 Date Received: 02/06/15 09:27 Lab Sample ID: 680-109694-3

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Benzene	30	D	20		ug/L	_		02/18/15 11:01	2
Chlorobenzene	2000	D	20		ug/L			02/18/15 11:01	20
1,2-Dichlorobenzene	20	U	20		ug/L			02/18/15 11:01	20
1,3-Dichlorobenzene	20	U	20		ug/L			02/18/15 11:01	20
1,4-Dichlorobenzene	70	D	20		ug/L			02/18/15 11:01	20
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
Toluene-d8 (Surr)	96		70 - 130					02/18/15 11:01	20
1,2-Dichloroethane-d4 (Surr)	118		70 - 130					02/18/15 11:01	20
Dibromofluoromethane (Surr)	106		70 - 130					02/18/15 11:01	20
4-Bromofluorobenzene (Surr)	108		70 _ 130					02/18/15 11:01	20
Method: 8270D - Semivolatile O	rganic Compou	ınds (GC/MS))						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2-Chlorophenol	12	U	12		ug/L		02/09/15 16:25	02/13/15 20:57	1
1,4-Dioxane	12	U	12		ug/L		02/09/15 16:25	02/13/15 20:57	1
1,2,4-Trichlorobenzene	12	U	12		ug/L		02/09/15 16:25	02/13/15 20:57	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	60		32 - 114				02/09/15 16:25	02/13/15 20:57	
2-Fluorophenol	42		26 - 107				02/09/15 16:25	02/13/15 20:57	1
Nitrobenzene-d5	58		30 - 117				02/09/15 16:25	02/13/15 20:57	1
Phenol-d5	49		25 - 109				02/09/15 16:25	02/13/15 20:57	
Terphenyl-d14	83		10 - 132				02/09/15 16:25	02/13/15 20:57	1
2,4,6-Tribromophenol	61		34 - 140				02/09/15 16:25	02/13/15 20:57	1
Method: RSK-175 - Dissolved G	ases (GC)								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ethane	3.0		1.1		ug/L			02/11/15 11:12	1
Ethylene	1.0	U	1.0		ug/L			02/11/15 11:12	1
Methane	320		0.58		ug/L			02/11/15 11:12	1
Method: 6010C - Metals (ICP) - T	otal Recoverab	ole							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Iron	6.7		0.050		mg/L		02/10/15 13:15	02/11/15 18:02	1
Manganese	0.56		0.010		mg/L		02/10/15 13:15	02/11/15 18:02	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	91	D	2.0		mg/L	- Annual Manager		02/11/15 13:03	2
Nitrate as N	0.050	U	0.050		mg/L			02/06/15 12:31	1
Sulfate	120	D	25		mg/L			02/11/15 13:11	5
Total Organic Carbon	5.2		1.0		mg/L			02/24/15 14:32	1
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Alkalinity	440		5.0		mg/L		-	02/08/15 11:53	1
Carbon Dioxide, Free	29		5.0		mg/L			02/08/15 11:53	1

Client: Solutia Inc.

Project/Site: 1Q15 LTM GW Sampling - 1403345

TestAmerica Job ID: 680-109694-1

SDG: KPS139

Client Sample ID: BSA-MW-4D-F(0.2)-0215

Date Collected: 02/05/15 11:44 Date Received: 02/06/15 09:27 Lab Sample ID: 680-109694-4

Matrix: Water

Method: 6010C - Metals (ICP) - Diss	olved								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Iron, Dissolved	6.6		0.050	-	mg/L		02/10/15 13:15	02/11/15 18:06	1
Manganese, Dissolved	0.57		0.010		mg/L		02/10/15 13:15	02/11/15 18:06	1
General Chemistry - Dissolved									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Dissolved Organic Carbon	4.8		1.0		mg/L			02/24/15 19:59	1

8

Client: Solutia Inc.

Project/Site: 1Q15 LTM GW Sampling - 1403345

TestAmerica Job ID: 680-109694-1

SDG: KPS139

Client Sample ID: BSA-MW-2D-0215

Date Collected: 02/05/15 13:25 Date Received: 02/06/15 09:27 Lab Sample ID: 680-109694-5

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Benzene	64000	D	1000		ug/L			02/18/15 11:24	100
Chlorobenzene	1000	U	1000		ug/L			02/18/15 11:24	100
1,2-Dichlorobenzene	1000	U	1000		ug/L			02/18/15 11:24	1000
1,3-Dichlorobenzene	1000	U	1000		ug/L			02/18/15 11:24	1000
1,4-Dichlorobenzene	1000	U	1000		ug/L			02/18/15 11:24	1000
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
Toluene-d8 (Surr)	94		70 - 130					02/18/15 11:24	1000
1,2-Dichloroethane-d4 (Surr)	108		70 - 130					02/18/15 11:24	1000
Dibromofluoromethane (Surr)	102		70 - 130					02/18/15 11:24	1000
4-Bromofluorobenzene (Surr)	110		70 - 130					02/18/15 11:24	1000
Method: 8270D - Semivolatile O	rganic Compou	inds (GC/MS)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2-Chlorophenol	11	U	11		ug/L		02/09/15 16:25	02/13/15 21:23	
1,4-Dioxane	11	U	11		ug/L		02/09/15 16:25	02/13/15 21:23	1
1,2,4-Trichlorobenzene	11	U	11		ug/L		02/09/15 16:25	02/13/15 21:23	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	40		32 - 114				02/09/15 16:25	02/13/15 21:23	
2-Fluorophenol	23	X	26 - 107				02/09/15 16:25	02/13/15 21:23	1
Nitrobenzene-d5	32		30 - 117				02/09/15 16:25	02/13/15 21:23	
Phenol-d5	28		25 - 109				02/09/15 16:25	02/13/15 21:23	
Terphenyl-d14	59		10 - 132				02/09/15 16:25	02/13/15 21:23	1
2,4,6-Tribromophenol	54		34 - 140				02/09/15 16:25	02/13/15 21:23	1
Method: RSK-175 - Dissolved G	ases (GC)								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ethane	13		1.1		ug/L			02/18/15 14:22	1
Ethylene	1.0	U	1.0		ug/L			02/18/15 14:22	1
Wethane (TCD)	19000		390		ug/L			02/16/15 14:05	1
Method: 6010C - Metals (ICP) - T	otal Recoverab	le							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
ron	4.3		0.050		mg/L		02/10/15 13:15	02/11/15 18:11	1
Manganese	0.64		0.010		mg/L		02/10/15 13:15	02/11/15 18:11	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	130	D	5.0		mg/L		•	02/11/15 12:52	5
litrate as N	0.050	U	0.050		mg/L			02/06/15 12:33	1
Gulfate	5.0	U	5.0		mg/L	2		02/11/15 12:05	. 1
Total Organic Carbon	11		1.0		mg/L			02/24/15 15:00	1
nalyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Alkalinity	620		5.0		mg/L			02/08/15 12:04	1
Carbon Dioxide, Free	36		5.0		-				,

Client: Solutia Inc.

Project/Site: 1Q15 LTM GW Sampling - 1403345

TestAmerica Job ID: 680-109694-1

SDG: KPS139

Client Sample ID: BSA-MW-2D-F(0.2)-0215

Date Collected: 02/05/15 13:25 Date Received: 02/06/15 09:27 Lab Sample ID: 680-109694-6

Matrix: Water

Method: 6010C - Metals (ICP) - Dis	solved								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Iron, Dissolved	4.1		0.050		mg/L		02/10/15 13:15	02/11/15 17:48	1
Manganese, Dissolved	0.63		0.010		mg/L		02/10/15 13:15	02/11/15 17:48	1
General Chemistry - Dissolved									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Dissolved Organic Carbon	7.8		1.0		mg/L			02/24/15 20:04	1

TestAmerica Savannah

Client: Solutia Inc.

Project/Site: 1Q15 LTM GW Sampling - 1403345

TestAmerica Job ID: 680-109694-1

SDG: KPS139

Client Sample ID: CPA-MW-4D-0215

Date Collected: 02/05/15 09:33 Date Received: 02/06/15 09:27 Lab Sample ID: 680-109694-7

Matrix: Water

Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	2.0		2.0		ug/L			02/18/15 16:51	
Chlorobenzene	230	D	2.0		ug/L			02/18/15 16:51	2
1,2-Dichlorobenzene	2.0	U	2.0		ug/L			02/18/15 16:51	2
1,3-Dichlorobenzene	2.0	U	2.0		ug/L			02/18/15 16:51	2
1,4-Dichlorobenzene	4.9	D	2.0		ug/L			02/18/15 16:51	2
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	117		70 - 130				•	02/18/15 16:51	
1,2-Dichloroethane-d4 (Surr)	123		70 - 130					02/18/15 16:51	2
Dibromofluoromethane (Surr)	121		70 - 130					02/18/15 16:51	2
4-Bromofluorobenzene (Surr)	103		70 - 130					02/18/15 16:51	2
Method: 8270D - Semivolatile (Organic Compou	nds (GC/MS	S)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1-Chloroaniline	130		21		ug/L		02/09/15 16:25	02/14/15 22:57	1
2-Chlorophenol	10	U	10		ug/L		02/09/15 16:25	02/14/15 22:57	1
1,2,4-Trichlorobenzene	10	U	10		ug/L		02/09/15 16:25	02/14/15 22:57	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	64		32 - 114				02/09/15 16:25	02/14/15 22:57	1
2-Fluorophenol	47		26 - 107				02/09/15 16:25	02/14/15 22:57	1
Nitrobenzene-d5	65		30 - 117				02/09/15 16:25	02/14/15 22:57	1
Phenol-d5	54		25 - 109				02/09/15 16:25	02/14/15 22:57	
erphenyl-d14	63		10 - 132				02/09/15 16:25	02/14/15 22:57	
2,4,6-Tribromophenol	64		34 - 140				02/09/15 16:25	02/14/15 22:57	1 1
Method: RSK-175 - Dissolved G	ases (GC)								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
thane	18		1.1		ug/L			02/18/15 14:35	Dil Fac
thylene	1.0	U	1.0		ug/L				. 1
flethane (TCD)	14000		390		ug/L			02/18/15 14:35 02/16/15 14:17	1
/lethod: 6010C - Metals (ICP) -	Total Basayarah	lo.							·
analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
on	15		0.050		mg/L		02/11/15 13:40	02/13/15 01:46	1
langanese	0.39		0.010		mg/L		02/11/15 13:40	02/13/15 01:46	1
Seneral Chemistry									
nalyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
hloride	210	<u>D</u>	5.0		mg/L			02/11/15 12:52	5
itrate as N	0.050	1	0.050		mg/L			02/11/15 12:32	
ulfate	5.0	U	5.0		mg/L			02/11/15 12:05	1
otal Organic Carbon	8.5		1.0		mg/L			02/11/15 12:05	1 1
nalyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
lkalinity	550		5.0		mg/L			02/08/15 12:13	1

Client: Solutia Inc.

Project/Site: 1Q15 LTM GW Sampling - 1403345

TestAmerica Job ID: 680-109694-1

SDG: KPS139

Client Sample ID: CPA-MW-4D-F(0.2)-0215

Lab Sample ID: 680-109694-8

Matrix: Water

Date Collected: 02/05/15 09:33 Date Received: 02/06/15 09:27

Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Iron, Dissolved	14	0.050	mg/L		02/11/15 13:40	02/13/15 01:23	1
Manganese, Dissolved	0.38	0.010	mg/L		02/11/15 13:40	02/13/15 01:23	1

General Chemistry - Dissolved

Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac

Dissolved Organic Carbon 8.5 1.0 mg/L 02/24/15 20:09 1

8

Client: Solutia Inc.

Project/Site: 1Q15 LTM GW Sampling - 1403345

TestAmerica Job ID: 680-109694-1

SDG: KPS139

Client Sample ID: CPA-MW-3D-0215

Date Collected: 02/05/15 12:45 Date Received: 02/06/15 09:27 Lab Sample ID: 680-109694-9

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Benzene	6000	D	100		ug/L	_		02/18/15 11:46	10
Chlorobenzene	160	D	100		ug/L			02/18/15 11:46	10
1,2-Dichlorobenzene	100	Ū	100		ug/L			02/18/15 11:46	10
1,3-Dichlorobenzene	100	U	100		ug/L			02/18/15 11:46	10
1,4-Dichlorobenzene	100	U	100		ug/L			02/18/15 11:46	10
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
Toluene-d8 (Surr)	94		70 _ 130					02/18/15 11:46	10
1,2-Dichloroethane-d4 (Surr)	120		70 - 130					02/18/15 11:46	10
Dibromofluoromethane (Surr)	103		70 - 130					02/18/15 11:46	10
4-Bromofluorobenzene (Surr)	108		70 - 130					02/18/15 11:46	10
Method: 8270D - Semivolatile Oi	rganic Compou	nds (GC/MS	5)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
4-Chloroaniline	28		21		ug/L		02/09/15 16:25	02/13/15 22:14	
2-Chlorophenol	11	U	11		ug/L		02/09/15 16:25	02/13/15 22:14	
1,2,4-Trichlorobenzene	11	U	11		ug/L		02/09/15 16:25	02/13/15 22:14	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
2-Fluorobiphenyl	72		32 - 114				02/09/15 16:25	02/13/15 22:14	
2-Fluorophenol	54		26 - 107				02/09/15 16:25	02/13/15 22:14	
Nitrobenzene-d5	74		30 - 117				02/09/15 16:25	02/13/15 22:14	
Phenol-d5	60		25 - 109				02/09/15 16:25	02/13/15 22:14	
Terphenyl-d14	85		10 - 132				02/09/15 16:25	02/13/15 22:14	
2,4,6-Tribromophenol	71		34 - 140				02/09/15 16:25	02/13/15 22:14	
Method: RSK-175 - Dissolved Ga	ases (GC)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ethane	26		1.1	1	ug/L	_		02/18/15 14:50	
Ethylene	1.0	U	1.0		ug/L			02/18/15 14:50	
Methane (TCD)	22000		390		ug/L			02/16/15 14:30	
Method: 6010C - Metals (ICP) - T	otal Recoverab	ole							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
lron	13		0.050		mg/L		02/11/15 13:40	02/13/15 01:51	-
Manganese	0.76		0.010		mg/L		02/11/15 13:40	02/13/15 01:51	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	320	D	10		mg/L			02/11/15 13:28	10
Nitrate as N	0.050		0.050		mg/L			02/06/15 12:35	
Sulfate	5.0	U	5.0		mg/L			02/11/15 12:06	4
Fotal Organic Carbon	8.8		1.0		mg/L			02/24/15 15:10	
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Alkalinity	560		5.0		mg/L			02/08/15 12:24	1
Carbon Dioxide, Free	38		5.0		mg/L			02/08/15 12:24	1

Client: Solutia Inc.

Project/Site: 1Q15 LTM GW Sampling - 1403345

TestAmerica Job ID: 680-109694-1

SDG: KPS139

Client Sample ID: CPA-MW-3D-F(0.2)-0215

Date Collected: 02/05/15 12:45 Date Received: 02/06/15 09:27 Lab Sample ID: 680-109694-10

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Iron, Dissolved	12		0.050		mg/L		02/11/15 13:40	02/13/15 01:55	1
Manganese, Dissolved	0.75		0.010		mg/L		02/11/15 13:40	02/13/15 01:55	1
General Chemistry - Dissolved									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Dissolved Organic Carbon	9.4		1.0		mg/L			02/24/15 20:14	1

8

Client: Solutia Inc.

Project/Site: 1Q15 LTM GW Sampling - 1403345

TestAmerica Job ID: 680-109694-1

SDG: KPS139

Client Sample ID: CPA-MW-3D-0215-AD

Date Collected: 02/05/15 12:45 Date Received: 02/06/15 09:27 Lab Sample ID: 680-109694-11

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Benzene	5800	D	100		ug/L			02/18/15 12:09	100
Chlorobenzene	160	D	100		ug/L			02/18/15 12:09	100
1,2-Dichlorobenzene	100	U	100		ug/L			02/18/15 12:09	100
1,3-Dichlorobenzene	100	U	100		ug/L			02/18/15 12:09	100
1,4-Dichlorobenzene	100	U	100		ug/L			02/18/15 12:09	100
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	92		70 - 130					02/18/15 12:09	100
1,2-Dichloroethane-d4 (Surr)	114		70 - 130					02/18/15 12:09	100
Dibromofluoromethane (Surr)	103		70 - 130					02/18/15 12:09	100
45									
4-Bromofluorobenzene (Surr)	104		70 - 130					02/18/15 12:09	100
Method: 8270D - Semivolatile Analyte	Organic Compou	nds (GC/MS Qualifier		MDL	Unit	D	Prepared	02/18/15 12:09 Analyzed	
Method: 8270D - Semivolatile	Organic Compou	•	S)	MDL	Unit ug/L	<u>D</u>	Prepared 02/09/15 16:25		
Method: 8270D - Semivolatile Analyte	Organic Compou Result	•	S)RL	MDL		D	•	Analyzed	Dil Fac
Method: 8270D - Semivolatile Analyte 4-Chloroaniline	Organic Compou Result 28	Qualifier	RL	MDL	ug/L	<u>D</u>	02/09/15 16:25	Analyzed 02/13/15 22:39	Dil Fac
Method: 8270D - Semivolatile Analyte 4-Chloroaniline 2-Chlorophenol	Organic Compou Result 28	Qualifier U	RL	MDL	ug/L ug/L	<u>D</u>	02/09/15 16:25 02/09/15 16:25	Analyzed 02/13/15 22:39 02/13/15 22:39	Dil Fac 1 1
Method: 8270D - Semivolatile Analyte 4-Chloroaniline 2-Chlorophenol 1,2,4-Trichlorobenzene	Organic Compou Result 28 11 11	Qualifier U	RL	MDL	ug/L ug/L	<u>D</u>	02/09/15 16:25 02/09/15 16:25 02/09/15 16:25	Analyzed 02/13/15 22:39 02/13/15 22:39 02/13/15 22:39	Dil Fac
Method: 8270D - Semivolatile Analyte 4-Chloroaniline 2-Chlorophenol 1,2,4-Trichlorobenzene Surrogate	Organic Compou Result 28 11 11 %Recovery	Qualifier U	RL	MDL	ug/L ug/L	<u>D</u>	02/09/15 16:25 02/09/15 16:25 02/09/15 16:25 Prepared	Analyzed 02/13/15 22:39 02/13/15 22:39 02/13/15 22:39 Analyzed	Dil Fac
Method: 8270D - Semivolatile Analyte 4-Chloroaniline 2-Chlorophenol 1,2,4-Trichlorobenzene Surrogate 2-Fluorobiphenyl	Organic Compou Result 28 11 11 %Recovery	Qualifier U	RL 22 11 11 11 Limits 32 - 114	MDL	ug/L ug/L	D	02/09/15 16:25 02/09/15 16:25 02/09/15 16:25 Prepared 02/09/15 16:25	Analyzed 02/13/15 22:39 02/13/15 22:39 02/13/15 22:39 Analyzed 02/13/15 22:39	Dil Fac
Method: 8270D - Semivolatile Analyte 4-Chloroaniline 2-Chlorophenol 1,2,4-Trichlorobenzene Surrogate 2-Fluorobiphenyl 2-Fluorophenol	Organic Compou Result 28 11 11 %Recovery 71 46	Qualifier U	RL 22 11 11 11 Limits 32 - 114 26 - 107	MDL	ug/L ug/L	<u>D</u>	02/09/15 16:25 02/09/15 16:25 02/09/15 16:25 Prepared 02/09/15 16:25 02/09/15 16:25	Analyzed 02/13/15 22:39 02/13/15 22:39 02/13/15 22:39 Analyzed 02/13/15 22:39 02/13/15 22:39	Dil Fac
Method: 8270D - Semivolatile Analyte 4-Chloroaniline 2-Chlorophenol 1,2,4-Trichlorobenzene Surrogate 2-Fluorobiphenyl 2-Fluorophenol Nitrobenzene-d5	Organic Compou Result 28 11 11 %Recovery 71 46 68	Qualifier U	RL 22 11 11 11 Limits 32 - 114 26 - 107 30 - 117	MDL	ug/L ug/L	<u>D</u>	02/09/15 16:25 02/09/15 16:25 02/09/15 16:25 Prepared 02/09/15 16:25 02/09/15 16:25 02/09/15 16:25	Analyzed 02/13/15 22:39 02/13/15 22:39 02/13/15 22:39 Analyzed 02/13/15 22:39 02/13/15 22:39 02/13/15 22:39	Dil Fac

8

Client: Solutia Inc.

Project/Site: 1Q15 LTM GW Sampling - 1403345

TestAmerica Job ID: 680-109694-1

SDG: KPS139

Client Sample ID: CPA-MW-2D-0215

Date Collected: 02/05/15 14:15 Date Received: 02/06/15 09:27 Lab Sample ID: 680-109694-12

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Benzene	250	U	250		ug/L			02/18/15 12:31	25
Chlorobenzene	31000	D	250		ug/L			02/18/15 12:31	250
1,2-Dichlorobenzene	260	D	250		ug/L			02/18/15 12:31	25
1,3-Dichlorobenzene	300	<i>D</i>	250		ug/L			02/18/15 12:31	250
1,4-Dichlorobenzene	8700	D	250		ug/L			02/18/15 12:31	250
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
Toluene-d8 (Surr)	94		70 - 130					02/18/15 12:31	25
1,2-Dichloroethane-d4 (Surr)	109		70 - 130					02/18/15 12:31	25
Dibromofluoromethane (Surr)	102		70 - 130					02/18/15 12:31	25
4-Bromofluorobenzene (Surr)	107		70 - 130					02/18/15 12:31	25
Method: 8270D - Semivolatile Organic	Compou	ınds (GC/MS	S)						
Analyte	-	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
2-Chlorophenol	35	J	11		ug/L		02/09/15 16:25	02/13/15 23:04	
1,2,4-Trichlorobenzene	11	U	11		ug/L		02/09/15 16:25	02/13/15 23:04	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
2-Fluorobiphenyl	62		32 - 114				02/09/15 16:25	02/13/15 23:04	-
2-Fluorophenol	46		26 - 107				02/09/15 16:25	02/13/15 23:04	
Nitrobenzene-d5	58		30 - 117				02/09/15 16:25	02/13/15 23:04	
Phenol-d5	57		25 - 109				02/09/15 16:25	02/13/15 23:04	
Terphenyl-d14	82		10 - 132				02/09/15 16:25	02/13/15 23:04	,
2,4,6-Tribromophenol	70		34 - 140				02/09/15 16:25	02/13/15 23:04	
Method: RSK-175 - Dissolved Gases (GC)								
Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ethane	3.8		1.1		ug/L		•	02/18/15 15:18	
Ethylene	1.0	U	1.0		ug/L			02/18/15 15:18	
Methane (TCD)	890		390		ug/L			02/16/15 14:43	
Method: 6010C - Metals (ICP) - Total R	ecoveral	ole							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Iron	8.7		0.050		mg/L		02/11/15 13:40	02/13/15 02:09	
Manganese	0.43		0.010		mg/L		02/11/15 13:40	02/13/15 02:09	
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	55	D	2.0		mg/L			02/11/15 13:03	
Nitrate as N	0.050		0.050		mg/L			02/06/15 12:36	
Sulfate	56	0	10		mg/L			02/11/15 13:11	2
Total Organic Carbon	8.1		1.0		mg/L			02/24/15 15:16	
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Alkalinity	420		5.0		mg/L			02/08/15 12:32	-
Carbon Dioxide, Free	21		5.0		mg/L			02/08/15 12:32	

TestAmerica Savannah

Client: Solutia Inc.

Project/Site: 1Q15 LTM GW Sampling - 1403345

TestAmerica Job ID: 680-109694-1

SDG: KPS139

Client Sample ID: CPA-MW-2D-F(0.2)-0215

Date Collected: 02/05/15 14:15 Date Received: 02/06/15 09:27 Lab Sample ID: 680-109694-13

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Iron, Dissolved	8.8		0.050		mg/L		02/11/15 13:40	02/13/15 02:14	1
Manganese, Dissolved	0.45		0.010		mg/L		02/11/15 13:40	02/13/15 02:14	1
General Chemistry - Dissolved									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Dissolved Organic Carbon	7.5		1.0		mg/L			02/24/15 20:24	1

Client: Solutia Inc.

2-Fluorobiphenyl

2-Fluorophenol

Terphenyl-d14

Phenol-d5

Nitrobenzene-d5

Project/Site: 1Q15 LTM GW Sampling - 1403345

TestAmerica Job ID: 680-109694-1

SDG: KPS139

Client Sample ID: CPA-MW-2D-0215-AD

Date Collected: 02/05/15 14:15 Date Received: 02/06/15 09:27

Lab Sample ID: 680-109694-14

02/09/15 16:25

02/09/15 16:25

02/09/15 16:25

02/09/15 16:25

02/09/15 16:25

02/13/15 23:30

02/13/15 23:30

02/13/15 23:30

02/13/15 23:30

02/13/15 23:30

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	250	U	250		ug/L			02/18/15 12:54	250
Chlorobenzene	32000	D	250		ug/L			02/18/15 12:54	250
1,2-Dichlorobenzene	300	D	250		ug/L			02/18/15 12:54	250
1,3-Dichlorobenzene	290	D	250		ug/L			02/18/15 12:54	250
1,4-Dichlorobenzene	9700	D	250		ug/L			02/18/15 12:54	250
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	96		70 - 130					02/18/15 12:54	250
1,2-Dichloroethane-d4 (Surr)	119		70 - 130					02/18/15 12:54	250
Dibromofluoromethane (Surr)	108		70 - 130					02/18/15 12:54	250
4-Bromofluorobenzene (Surr)	112		70 - 130					02/18/15 12:54	250
Method: 8270D - Semivolatile	Organic Compou	nds (GC/MS	S)						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2-Chlorophenol	11	U 5	11		ug/L		02/09/15 16:25	02/13/15 23:30	1
1,2,4-Trichlorobenzene	11	U J	11		ug/L		02/09/15 16:25	02/13/15 23:30	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac

L	2,4,6-Tribromophenol	30	X	34 - 140				02/09/15 16:25	02/13/15 23:30	1
	Method: 8270D - Semivolatile Orga	anic Compou	ınds (GC/M	S) - RE						
	Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
	2-Chlorophenol	11	U.H. J.	11		ug/L		02/17/15 15:36	02/18/15 21:43	1
	1,2,4-Trichlorobenzene	11	UH Z	11		ug/L		02/17/15 15:36	02/18/15 21:43	1
١	Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
	2-Fluorobiphenyl	54		32 - 114				02/17/15 15:36	02/18/15 21:43	
	2-Fluorophenol	40		26 - 107				02/17/15 15:36	02/18/15 21:43	1
	Nitrobenzene-d5	50		30 - 117				02/17/15 15:36	02/18/15 21:43	1
	Phenol-d5	41		25 - 109				02/17/15 15:36	02/18/15 21:43	1
	Terphenyl-d14	65		10 - 132				02/17/15 15:36	02/18/15 21:43	1
-	2,4,6-Tribromophenol	52		34 - 140				02/17/15 15:36	02/18/15 21:43	1

32 - 114

26 - 107

30 - 117

25 - 109

10 - 132

21 X

10 X

14 X

10 X

73

TestAmerica Savannah LAB 4/7/15

Client: Solutia Inc.

Project/Site: 1Q15 LTM GW Sampling - 1403345

TestAmerica Job ID: 680-109694-1

SDG: KPS139

Client Sample ID: 1Q15 LTM Trip Blank #4

Date Collected: 02/05/15 00:00 Date Received: 02/06/15 09:27 Lab Sample ID: 680-109694-15

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	1.0	U	1.0		ug/L		•	02/18/15 09:53	1
Chlorobenzene	1.0	U	1.0		ug/L			02/18/15 09:53	1
1,2-Dichlorobenzene	1.0	U	1.0		ug/L			02/18/15 09:53	1
1,3-Dichlorobenzene	1.0	Ü	1.0		ug/L			02/18/15 09:53	
1,4-Dichlorobenzene	1.0	U	1.0		ug/L			02/18/15 09:53	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	95		70 - 130			-		02/18/15 09:53	1
1,2-Dichloroethane-d4 (Surr)	103		70 - 130					02/18/15 09:53	1
Dibromofluoromethane (Surr)	99		70 - 130					02/18/15 09:53	1
4-Bromofluorobenzene (Surr)	111		70 - 130					02/18/15 09:53	

8

Surrogate Summary

Client: Solutia Inc.

Project/Site: 1Q15 LTM GW Sampling - 1403345

TestAmerica Job ID: 680-109694-1

SDG: KPS139

Method: 8260B - Volatile Organic Compounds (GC/MS)

Matrix: Water

Prep Type: Total/NA

				Percent Sur	rogate Recove	ery (Acceptance Limits)
		TOL	12DCE	DBFM	BFB	
Lab Sample ID	Client Sample ID	(70-130)	(70-130)	(70-130)	(70-130)	
680-109694-1	BSA-MW-5D-0215	115	115	119	107	
680-109694-1 MS	BSA-MW-5D-0215	89	112	99	107	
680-109694-1 MSD	BSA-MW-5D-0215	93	119	104	107	
680-109694-3	BSA-MW-4D-0215	96	118	106	108	
680-109694-5	BSA-MW-2D-0215	94	108	102	110	
680-109694-7	CPA-MW-4D-0215	117	123	121	103	
680-109694-9	CPA-MW-3D-0215	94	120	103	108	
680-109694-11	CPA-MW-3D-0215-AD	92	114	103	104	
680-109694-12	CPA-MW-2D-0215	94	109	102	107	
680-109694-14	CPA-MW-2D-0215-AD	96	119	108	112	
680-109694-15	1Q15 LTM Trip Blank #4	95	103	99	111	
LCS 680-371316/4	Lab Control Sample	113	105	109	98	
LCS 680-371318/4	Lab Control Sample	91	104	102	104	
LCSD 680-371316/5	Lab Control Sample Dup	115	105	112	100	
LCSD 680-371318/5	Lab Control Sample Dup	90	103	100	111	
MB 680-371316/8	Method Blank	113	106	112	108	
MB 680-371318/8	Method Blank	95	111	102	111	

Surrogate Legend

TOL = Toluene-d8 (Surr)

12DCE = 1,2-Dichloroethane-d4 (Surr)

DBFM = Dibromofluoromethane (Surr)

BFB = 4-Bromofluorobenzene (Surr)

Method: 8270D - Semivolatile Organic Compounds (GC/MS)

Matrix: Water

Prep Type: Total/NA

				Percent Surrogate Recovery (Acceptance Li						
		FBP	2FP	NBZ	PHL	TPH	TBP			
Lab Sample ID	Client Sample ID	(32-114)	(26-107)	(30-117)	(25-109)	(10-132)	(34-140)			
680-109694-1	BSA-MW-5D-0215	53	39	52	42	60	56			
680-109694-1 MS	BSA-MW-5D-0215	63	38	61	46	75	79			
680-109694-1 MSD	BSA-MW-5D-0215	66	42	70	50	77	82			
680-109694-3	BSA-MW-4D-0215	60	42	58	49	83	61			
680-109694-5	BSA-MW-2D-0215	40	23 X	32	28	59	54			
680-109694-7	CPA-MW-4D-0215	64	47	65	54	63	64			
680-109694-9	CPA-MW-3D-0215	72	54	74	60	85	71			
680-109694-11	CPA-MW-3D-0215-AD	71	46	68	53	87	72			
680-109694-12	CPA-MW-2D-0215	62	46	58	57	82	70			
680-109694-14	CPA-MW-2D-0215-AD	21 X	10 X	14 X	10 X	73	30 X			
680-109694-14 - RE	CPA-MW-2D-0215-AD	54	40	50	41	65	52			
LCS 680-370098/13-A	Lab Control Sample	67	43	62	50	87	76			
LCS 680-371177/5-A	Lab Control Sample	72	59	72	64	80	78			
LCSD 680-371177/6-A	Lab Control Sample Dup	55	28	50	25	68	61			
MB 680-370098/12-A	Method Blank	70	42	57	43	101	68			
MB 680-371177/4-A	Method Blank	54	41	51	45	91	54			

Surrogate Legend

FBP = 2-Fluorobiphenyl 2FP = 2-Fluorophenol

TestAmerica Savannah

Surrogate Summary

Client: Solutia Inc.

Project/Site: 1Q15 LTM GW Sampling - 1403345

TestAmerica Job ID: 680-109694-1

SDG: KPS139

NBZ = Nitrobenzene-d5

PHL = Phenol-d5

TPH = Terphenyl-d14

TBP = 2,4,6-Tribromophenol

Client: Solutia Inc.

Project/Site: 1Q15 LTM GW Sampling - 1403345

TestAmerica Job ID: 680-109694-1

SDG: KPS139

Method: 8260B - Volatile Organic Compounds (GC/MS)

Lab Sample ID: MB 680-371316/8

Matrix: Water

Analysis Batch: 371316

Client Sample ID: Method Blank

Prep Type: Total/NA

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	1.0	U	1.0		ug/L			02/18/15 08:47	1
Chlorobenzene	1.0	U	1.0		ug/L			02/18/15 08:47	1
1,2-Dichlorobenzene	1.0	U	1.0		ug/L			02/18/15 08:47	1
1,3-Dichlorobenzene	1.0	U	1.0		ug/L			02/18/15 08:47	1
1,4-Dichlorobenzene	1.0	U	1.0		ug/L			02/18/15 08:47	1

MB MB Surrogate %Recovery Qualifier Limits Prepared Dil Fac Analyzed Toluene-d8 (Surr) 113 70 - 130 02/18/15 08:47 1,2-Dichloroethane-d4 (Surr) 106 70 - 130 02/18/15 08:47 Dibromofluoromethane (Surr) 70 - 130 112 02/18/15 08:47 4-Bromofluorobenzene (Surr) 108 70 - 130 02/18/15 08:47

Lab Sample ID: LCS 680-371316/4

Matrix: Water

Analysis Batch: 371316

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Spike	LCS	LCS				%Rec.
Added	Result	Qualifier	Unit	D	%Rec	Limits
50.0	51.7		ug/L		103	73 - 131
50.0	51.4		ug/L		103	80 - 120
50.0	52.9		ug/L		106	80 - 120
50.0	52.5		ug/L		105	80 - 120
50.0	51.2		ug/L		102	80 - 120
	Added 50.0 50.0 50.0 50.0	Added Result 50.0 51.7 50.0 51.4 50.0 52.9 50.0 52.5	Added Result Qualifier 50.0 51.7 50.0 51.4 50.0 52.9 50.0 52.5	Added Result Qualifier Unit 50.0 51.7 ug/L 50.0 51.4 ug/L 50.0 52.9 ug/L 50.0 52.5 ug/L	Added Result Qualifier Unit D 50.0 51.7 ug/L 50.0 51.4 ug/L 50.0 52.9 ug/L 50.0 52.5 ug/L	Added Result Qualifier Unit D %Rec 50.0 51.7 ug/L 103 50.0 51.4 ug/L 103 50.0 52.9 ug/L 106 50.0 52.5 ug/L 105

LCS LCS Surrogate %Recovery Qualifier Limits Toluene-d8 (Surr) 113 70 - 130 1,2-Dichloroethane-d4 (Surr) 105 70 - 130 Dibromofluoromethane (Surr) 109 70 - 130 4-Bromofluorobenzene (Surr) 98 70 - 130

Lab Sample ID: LCSD 680-371316/5

Matrix: Water

Analysis Batch: 371316

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	50.0	52.7		ug/L		105	73 - 131	2	30
Chlorobenzene	50.0	52.6		ug/L		105	80 - 120	2	20
1,2-Dichlorobenzene	50.0	53.2		ug/L		106	80 - 120	1	20
1,3-Dichlorobenzene	50.0	52.6		ug/L		105	80 - 120	0	20
1,4-Dichlorobenzene	50.0	52.3		ug/L		105	80 - 120	2	20

	LCSD	LCSD	
Surrogate	%Recovery	Qualifier	Limits
Toluene-d8 (Surr)	115		70 _ 130
1,2-Dichloroethane-d4 (Surr)	105		70 - 130
Dibromofluoromethane (Surr)	112		70 - 130
4-Bromofluorobenzene (Surr)	100		70 - 130

TestAmerica Savannah

Client: Solutia Inc.

Project/Site: 1Q15 LTM GW Sampling - 1403345

TestAmerica Job ID: 680-109694-1

SDG: KPS139

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 680-371318/8

Matrix: Water

Analysis Batch: 371318

Client Sample ID: Method Blank Prep Type: Total/NA

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	1.0	U	1.0		ug/L		•	02/18/15 09:16	1
Chlorobenzene	1.0	U	1.0		ug/L			02/18/15 09:16	1
1,2-Dichlorobenzene	1.0	U	1.0		ug/L			02/18/15 09:16	1
1,3-Dichlorobenzene	1.0	U	1.0		ug/L			02/18/15 09:16	
1,4-Dichlorobenzene	1.0	U	1.0		ug/L			02/18/15 09:16	1

		MB	MB				
	Surrogate %R	ecovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
	Toluene-d8 (Surr)	95		70 - 130		02/18/15 09:16	
	1,2-Dichloroethane-d4 (Surr)	111		70 - 130		02/18/15 09:16	1
'	Dibromofluoromethane (Surr)	102		70 - 130		02/18/15 09:16	1
Ŀ	4-Bromofluorobenzene (Surr)	111		70 - 130		02/18/15 09:16	1

Lab Sample ID: LCS 680-371318/4

Matrix: Water

Analysis Batch: 371318

Client Sample ID: Lab Control Sample Prep Type: Total/NA

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	50.0	47.2		ug/L		94	73 - 131	
Chlorobenzene	50.0	50.3		ug/L		101	80 - 120	
1,2-Dichlorobenzene	50.0	47.7		ug/L		95	80 - 120	
1,3-Dichlorobenzene	50.0	49.0		ug/L		98	80 - 120	
1,4-Dichlorobenzene	50.0	49.3		ug/L		99	80 - 120	

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
Toluene-d8 (Surr)	91		70 - 130
1,2-Dichloroethane-d4 (Surr)	104		70 - 130
Dibromofluoromethane (Surr)	102		70 - 130
4-Bromofluorobenzene (Surr)	104		70 - 130

Lab Sample ID: LCSD 680-371318/5

Matrix: Water

Analysis Batch: 371318

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	50.0	46.9		ug/L		94	73 - 131	1	30
Chlorobenzene	50.0	48.2		ug/L		96	80 - 120	4	20
1,2-Dichlorobenzene	50.0	48.0		ug/L		96	80 - 120	1	20
1,3-Dichlorobenzene	50.0	49.3		ug/L		99	80 - 120	1	20
1,4-Dichlorobenzene	50.0	49.3		ug/L		99	80 - 120	0	20

	LCSD	LCSD	
Surrogate	%Recovery	Qualifier	Limits
Toluene-d8 (Surr)	90		70 - 130
1,2-Dichloroethane-d4 (Surr)	103		70 - 130
Dibromofluoromethane (Surr)	100		70 - 130
4-Bromofluorobenzene (Surr)	111		70 - 130

TestAmerica Savannah

Client: Solutia Inc.

Project/Site: 1Q15 LTM GW Sampling - 1403345

TestAmerica Job ID: 680-109694-1

SDG: KPS139

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: 680-109694-1 MS

Matrix: Water

Analysis Batch: 371318

Client Sample ID: BSA-MW-5D-0215

Prep Type: Total/NA

-	Sample	Sample	Spike	MS	MS				%Rec.
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
Benzene	68	_	100	133	F1	ug/L		64	73 - 131
Chlorobenzene	240		100	284	F1	ug/L		46	80 - 120
1,2-Dichlorobenzene	2.0	U	100	95.4		ug/L		95	80 - 120
1,3-Dichlorobenzene	2.0	U	100	96.8		ug/L		97	80 - 120
1,4-Dichlorobenzene	2.0	U	100	98.7		ug/L		99	80 - 120
1,4-Dicinorobenzene	2.0	U	100	90.7		ug/L		99	80 - 120

MS MS Surrogate %Recovery Qualifier Limits Toluene-d8 (Surr) 89 70 - 130 1,2-Dichloroethane-d4 (Surr) 112 70 - 130 Dibromofluoromethane (Surr) 99 70 - 130 4-Bromofluorobenzene (Surr) 107 70 - 130

Client Sample ID: BSA-MW-5D-0215

Prep Type: Total/NA

Analysis Batch: 371318

Matrix: Water

Lab Sample ID: 680-109694-1 MSD

	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	68		100	134	F1	ug/L		66	73 - 131	1	30
Chlorobenzene	240		100	281	F1	ug/L		43	80 - 120	1	20
1,2-Dichlorobenzene	2.0	U	100	98.7		ug/L		99	80 - 120	3	20
1,3-Dichlorobenzene	2.0	U	100	96.9		ug/L		97	80 - 120	0	20
1,4-Dichlorobenzene	2.0	U	100	97.4		ug/L		97	80 - 120	1	20

	MSD	MSD	
Surrogate	%Recovery	Qualifier	Limits
Toluene-d8 (Surr)	93		70 - 130
1,2-Dichloroethane-d4 (Surr)	119		70 - 130
Dibromofluoromethane (Surr)	104		70 - 130
4-Bromofluorobenzene (Surr)	107		70 - 130

Method: 8270D - Semivolatile Organic Compounds (GC/MS)

Lab Sample ID: MB 680-370098/12-A

Matrix: Water

Analysis Batch: 371019

Client Sample ID: Method Blank
Prep Type: Total/NA

Prep Batch: 370098

MB MB
sult Qualifier RL MDL Unit D Prepared Analyzed Dil Fac

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
4-Chloroaniline	20	U	20		ug/L		02/09/15 16:25	02/14/15 22:34	1
2-Chlorophenol	10	U	10		ug/L		02/09/15 16:25	02/14/15 22:34	1
1,4-Dioxane	10	U	10		ug/L		02/09/15 16:25	02/14/15 22:34	1
1,2,4-Trichlorobenzene	10	U	10		ug/L		02/09/15 16:25	02/14/15 22:34	1

		MB	MB				
	Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
	2-Fluorobiphenyl	70		32 - 114	02/09/15 16:25	02/14/15 22:34	1
	2-Fluorophenol	42		26 - 107	02/09/15 16:25	02/14/15 22:34	1
	Nitrobenzene-d5	57		30 - 117	02/09/15 16:25	02/14/15 22:34	. 1
	Phenol-d5	43		25 - 109	02/09/15 16:25	02/14/15 22:34	1
-	Terphenyl-d14	101		10 - 132	02/09/15 16:25	02/14/15 22:34	1

TestAmerica Savannah

Client: Solutia Inc.

Project/Site: 1Q15 LTM GW Sampling - 1403345

TestAmerica Job ID: 680-109694-1

SDG: KPS139

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 680-370098/12-A

Matrix: Water

Analysis Batch: 371019

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 370098

	MB	MB				
Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
2,4,6-Tribromophenol	68		34 - 140	02/09/15 16:25	02/14/15 22:34	

Lab Sample ID: LCS 680-370098/13-A

Matrix: Water

Analysis Batch: 370908

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 370098

	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
4-Chloroaniline	100	62.0		ug/L		62	10 - 112
2-Chlorophenol	100	52.1		ug/L		52	38 - 98
1,4-Dioxane	100	37.2		ug/L		37	16 - 79
1,2,4-Trichlorobenzene	100	44.6		ug/L		45	16 - 80

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
2-Fluorobiphenyl	67		32 - 114
2-Fluorophenol	43		26 - 107
Nitrobenzene-d5	62		30 - 117
Phenol-d5	50		25 - 109
Terphenyl-d14	87		10 - 132
2,4,6-Tribromophenol	76		34 - 140

Lab Sample ID: 680-109694-1 MS

Matrix: Water

Analysis Batch: 370908

Client Sample ID: BSA-MW-5D-0215

Prep Type: Total/NA

Prep Batch: 370098

	Sample	Sample	Spike	MS	MS				%Rec.
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
4-Chloroaniline	22	U	105	67.0		ug/L		64	10 - 112
2-Chlorophenol	11	U	105	52.6		ug/L		48	38 - 98
1,4-Dioxane	11	U	105	34.4		ug/L		33	16 - 79
1,2,4-Trichlorobenzene	11	U	105	41.9		ug/L		40	16 - 80

MS MS

Surrogate	%Recovery	Qualifier	Limits
2-Fluorobiphenyl	63		32 - 114
2-Fluorophenol	38		26 - 107
Nitrobenzene-d5	61		30 - 117
Phenol-d5	46		25 - 109
Terphenyl-d14	75		10 - 132
2,4,6-Tribromophenol	79		34 - 140

Lab Sample ID: 680-109694-1 MSD

Matrix: Water

Analysis Batch: 370908

Client Sample ID: BSA-MW-5D-0215

Prep Type: Total/NA

Prep Batch: 370098

-	0		-						Preb i	batch: 3	70098
	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
4-Chloroaniline	22	U	105	73.7		ug/L		70	10 - 112	9	50
2-Chlorophenol	11	U	105	64.1		ug/L		59	38 - 98	20	50
1,4-Dioxane	11	U	105	40.0		ug/L		38	16 - 79	15	50
1,2,4-Trichlorobenzene	11	U	105	48.4		ug/L		46	16 - 80		
						49/1		40	10 - 00	14	50

TestAmerica Savannah

Client: Solutia Inc.

Project/Site: 1Q15 LTM GW Sampling - 1403345

TestAmerica Job ID: 680-109694-1

SDG: KPS139

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: 680-109694-1 MSD

Matrix: Water

Analysis Batch: 370908

Client Sample ID: BSA-MW-5D-0215

Prep Type: Total/NA

Prep Batch: 370098

	MSD	MSD	
Surrogate	%Recovery	Qualifier	Limits
2-Fluorobiphenyl	66		32 - 114
2-Fluorophenol	42		26 - 107
Nitrobenzene-d5	70		30 - 117
Phenol-d5	50		25 - 109
Terphenyl-d14	77		10 - 132
2,4,6-Tribromophenol	82		34 - 140

Lab Sample ID: MB 680-371177/4-A

Matrix: Water

Analysis Batch: 371444

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 371177

l		MB	MB							
-	Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
	4-Chloroaniline	5.0	U	5.0		ug/L		02/17/15 15:36	02/18/15 20:08	1
	2-Chlorophenol	2.5	U	2.5		ug/L		02/17/15 15:36	02/18/15 20:08	1
	1,4-Dioxane	2.5	U	2.5		ug/L		02/17/15 15:36	02/18/15 20:08	1
	1,2,4-Trichlorobenzene	2.5	U	2.5		ug/L		02/17/15 15:36	02/18/15 20:08	1

мв мв

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	54	32 - 114	02/17/15 15:36	02/18/15 20:08	1
2-Fluorophenol	41	26 - 107	02/17/15 15:36	02/18/15 20:08	1
Nitrobenzene-d5	51	30 - 117	02/17/15 15:36	02/18/15 20:08	1
Phenol-d5	45	25 - 109	02/17/15 15:36	02/18/15 20:08	1
Terphenyl-d14	91	10 - 132	02/17/15 15:36	02/18/15 20:08	1
2,4,6-Tribromophenol	54	34 _ 140	02/17/15 15:36	02/18/15 20:08	1

Lab Sample ID: LCS 680-371177/5-A

Matrix: Water

Analysis Batch: 371444

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 371177

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
4-Chloroaniline	25.0	17.2		ug/L		69	10 - 112	
2-Chlorophenol	25.0	15.2		ug/L		61	38 - 98	
1,4-Dioxane	25.0	13.0		ug/L		52	16 _ 79	
1,2,4-Trichlorobenzene	25.0	13.5		ug/L		54	16 _ 80	

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
2-Fluorobiphenyl	72		32 - 114
2-Fluorophenol	59		26 - 107
Nitrobenzene-d5	72		30 - 117
Phenol-d5	64		25 - 109
Terphenyl-d14	80		10 - 132
2,4,6-Tribromophenol	78		34 - 140

TestAmerica Savannah

Client: Solutia Inc.

Project/Site: 1Q15 LTM GW Sampling - 1403345

TestAmerica Job ID: 680-109694-1

SDG: KPS139

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCSD 680-371177/6-A

Matrix: Water

Analysis Batch: 371444

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Prep Batch: 371177

						Prep	saten: 3	71177
Spike	LCSD	LCSD				%Rec.		RPD
Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
25.0	4.57	J *	ug/L		18	10 - 112	116	50
25.0	10.4		ug/L		42	38 - 98	37	50
25.0	5.26	*	ug/L		21	16 - 79	85	50
25.0	10.1		ug/L		41	16 _ 80	29	50
	Added 25.0 25.0 25.0	Added Result 25.0 4.57 25.0 10.4 25.0 5.26	Added Result Qualifier 25.0 4.57 J * 25.0 10.4 25.0 5.26 *	Added Result Qualifier Unit 25.0 4.57 J* ug/L 25.0 10.4 ug/L 25.0 5.26 * ug/L	Added Result Qualifier Unit D 25.0 4.57 J* ug/L 25.0 10.4 ug/L 25.0 5.26 * ug/L	Added Result Qualifier Unit D %Rec 25.0 4.57 J* ug/L 18 25.0 10.4 ug/L 42 25.0 5.26 * ug/L 21	Spike LCSD LCSD %Rec. Added Result Qualifier Unit D %Rec Limits 25.0 4.57 J * ug/L 18 10 - 112 25.0 10.4 ug/L 42 38 - 98 25.0 5.26 * ug/L 21 16 - 79	Added Result Qualifier Unit D %Rec Limits RPD 25.0 4.57 J* ug/L 18 10 - 112 116 25.0 10.4 ug/L 42 38 - 98 37 25.0 5.26 * ug/L 21 16 - 79 85

LCSD LCSD

Surrogate	%Recovery	Qualifier	Limits
2-Fluorobiphenyl	55		32 - 114
2-Fluorophenol	28		26 - 107
Nitrobenzene-d5	50		30 - 117
Phenol-d5	25		25 - 109
Terphenyl-d14	68	•	10 - 132
2,4,6-Tribromophenol	61		34 - 140

Method: RSK-175 - Dissolved Gases (GC)

Lab Sample ID: MB 680-370430/7

Matrix: Water

Analysis Batch: 370430

Client Sample ID: Method Blank

Prep Type: Total/NA

		MB	MR							
	Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
	Ethane	1.1	U	1.1		ug/L			02/11/15 10:35	1
	Ethylene	1.0	U	1.0		ug/L			02/11/15 10:35	1
L	Methane	0.58	U	0.58		ug/L			02/11/15 10:35	1

Lab Sample ID: LCS 680-370430/5

Matrix: Water

Analysis Batch: 370430

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Ethane	288	282		ug/L		98	75 - 125	
Ethylene	269	262		ug/L		97	75 - 125	
Methane	154	150		ug/L		98	75 - 125	

Lab Sample ID: LCSD 680-370430/6

Matrix: Water

Analysis Batch: 370430

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

		Spike	LCSD	LCSD				%Rec.		RPD
	Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
	Ethane	288	268		ug/L		93	75 _ 125	5	30
İ	Ethylene	269	234		ug/L		87	75 - 125	11	30
	Methane	154	146		ug/L		95	75 - 125	3	30

Lab Sample ID: MB 680-370975/7

Matrix: Water

Analysis Batch: 370975

Client Sample ID: Method Blank

Prep Type: Total/NA

	MB	MB							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Methane (TCD)	390	U	390		ug/L			02/16/15 10:32	1

TestAmerica Savannah

Client: Solutia Inc.

Project/Site: 1Q15 LTM GW Sampling - 1403345

TestAmerica Job ID: 680-109694-1

SDG: KPS139

Method: RSK-175 - Dissolved Gases (GC) (Continued)

Lab Sample ID: LCS 680-370975/2

Matrix: Water

Analysis Batch: 370975

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Spike LCS LCS %Rec. Analyte Added Result Qualifier Unit Limits %Rec Methane (TCD) 1920 1840 ug/L 96 75 - 125

Lab Sample ID: LCSD 680-370975/32

Matrix: Water

Analysis Batch: 370975

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

%Rec. RPD

Spike LCSD LCSD Analyte Added Result Qualifier Unit D %Rec Limits RPD Limit Methane (TCD) 1920 1780 ug/L 93 75 - 125 30

Lab Sample ID: MB 680-371304/7

Matrix: Water

Analysis Batch: 371304

Client Sample ID: Method Blank

Prep Type: Total/NA

	IVIB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ethane	1.1	U	1.1		ug/L			02/18/15 10:52	1
Ethylene	1.0	U	1.0		ug/L			02/18/15 10:52	1
Methane	0.58	U	0.58		ug/L			02/18/15 10:52	1

Lab Sample ID: LCS 680-371304/5

Matrix: Water

Analysis Batch: 371304

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

	Spike	LCS	LCS				%Rec.		
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits		
Ethane	288	294		ug/L		102	75 - 125	_	
Ethylene	269	278		ug/L		103	75 - 125		
Methane	154	156		ug/L		101	75 ₋ 125		

Lab Sample ID: LCSD 680-371304/32

Matrix: Water

Analysis Batch: 371304

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Ethane	288	264		ug/L		91	75 - 125	11	30
Ethylene	269	238		ug/L		88	75 _ 125	16	30
Methane	154	142		ug/L		92	75 - 125	10	30

Method: 6010C - Metals (ICP)

Lab Sample ID: MB 680-370350/1-A

Matrix: Water

Analysis Batch: 370667

Client Sample ID: Method Blank Prep Type: Total Recoverable

Prep Batch: 370350

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Iron	0.050	U	0.050		mg/L		02/10/15 13:15	02/11/15 16:48	1
Iron, Dissolved	0.050	U	0.050	1	mg/L		02/10/15 13:15	02/11/15 16:48	1
Manganese	0.010	U	0.010		mg/L		02/10/15 13:15	02/11/15 16:48	1
Manganese, Dissolved	0.010	U	0.010		mg/L		02/10/15 13:15	02/11/15 16:48	1

TestAmerica Savannah

Page 36 of 56

Client: Solutia Inc.

Project/Site: 1Q15 LTM GW Sampling - 1403345

TestAmerica Job ID: 680-109694-1

SDG: KPS139

Method: 6010C - Metals (ICP) (Continued)

Lab Sample ID: LCS 680-370350/2-A

Matrix: Water

Analysis Batch: 370667

Client Sample ID: Lab Control Sample Prep Type: Total Recoverable

Prep Batch: 370350

	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Iron	5.00	4.93		mg/L		99	80 - 120
Iron, Dissolved	5.00	4.93		mg/L		99	80 - 120
Manganese	0.500	0.526		mg/L		105	80 - 120
Manganese, Dissolved	0.500	0.526		mg/L		105	80 - 120

Lab Sample ID: MB 680-370514/1-A

Matrix: Water

Analysis Batch: 370847

Client Sample ID: Method Blank Prep Type: Total Recoverable

Prep Batch: 370514

	MB	MB						•	
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Iron	0.050	U	0.050		mg/L		02/11/15 13:40	02/13/15 01:14	1
Iron, Dissolved	0.050	U	0.050		mg/L		02/11/15 13:40	02/13/15 01:14	1
Manganese	0.010	U	0.010		mg/L		02/11/15 13:40	02/13/15 01:14	1
Manganese, Dissolved	0.010	U	0.010		mg/L		02/11/15 13:40	02/13/15 01:14	1

Lab Sample ID: LCS 680-370514/2-A

Matrix: Water

Analysis Batch: 370847

Client Sample ID: Lab Control Sample Prep Type: Total Recoverable

Prep Batch: 370514

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Iron	5.00	5.06		mg/L		101	80 - 120	-
Iron, Dissolved	5.00	5.06		mg/L		101	80 - 120	
Manganese	0.500	0.525		mg/L		105	80 - 120	
Manganese, Dissolved	0.500	0.525		mg/L		105	80 - 120	

Lab Sample ID: 680-109694-8 MS

Matrix: Water

Analysis Batch: 370847

Client Sample ID: CPA-MW-4D-F(0.2)-0215

Prep Type: Dissolved

Prep Batch: 370514

	Sample	Sample	Spike	MS	MS				%Rec.	~
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Iron	14		5.00	19.0		mg/L	_	98	75 - 125	_
Iron, Dissolved	14		5.00	19.0		mg/L		98	75 - 125	
Manganese	0.38		0.500	0.900		mg/L		104	75 _ 125	
Manganese, Dissolved	0.38		0.500	0.900		mg/L		104	75 - 125	

Lab Sample ID: 680-109694-8 MSD

Matrix: Water

Analysis Batch: 370847

Client Sample ID: CPA-MW-4D-F(0.2)-0215

Prep Type: Dissolved

Prep Batch: 370514

	Comple	Cample	0							Juton. o	70017
	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Iron	14		5.00	18.8		mg/L		95	75 - 125	1	20
Iron, Dissolved	14		5.00	18.8		mg/L		95	75 - 125	1	20
Manganese	0.38		0.500	0.895		mg/L		102	75 - 125	1	20
Manganese, Dissolved	0.38		0.500	0.895		mg/L		102	75 - 125	1	20

TestAmerica Savannah

Client: Solutia Inc.

Project/Site: 1Q15 LTM GW Sampling - 1403345

TestAmerica Job ID: 680-109694-1

SDG: KPS139

Method: 310.1 - Alkalinity

Lab Sample ID: MB 680-370058/5

Matrix: Water

Analysis Batch: 370058

Client Sample ID: Method Blank

Prep Type: Total/NA

мв мв Analyte Result Qualifier RL RL Unit D Prepared Analyzed Dil Fac Alkalinity 5.0 U 5.0 mg/L 02/07/15 16:53 Carbon Dioxide, Free 5.0 U 5.0 mg/L 02/07/15 16:53

Lab Sample ID: LCS 680-370058/6

Matrix: Water

Analysis Batch: 370058

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Spike LCS LCS %Rec. Analyte Added Result Qualifier Unit %Rec Limits Alkalinity 250 224 mg/L 90 80 - 120

Lab Sample ID: LCSD 680-370058/26

Matrix: Water

Analysis Batch: 370058

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Spike LCSD LCSD %Rec. RPD Analyte Added Result Qualifier Unit %Rec Limits RPD Limit Alkalinity 250 219 mg/L 80 - 120 87 30

Lab Sample ID: 680-109694-12 DU

Matrix: Water

Analysis Batch: 370058

Client Sample ID: CPA-MW-2D-0215

Prep Type: Total/NA

Sample Sample DU DU RPD Analyte Result Qualifier Result Qualifier Unit RPD Limit Alkalinity 420 431 mg/L 2 30 Carbon Dioxide, Free 21 21.8 mg/L 5 30

Method: 325.2 - Chloride

Lab Sample ID: MB 680-370556/23

Matrix: Water

Analysis Batch: 370556

Client Sample ID: Method Blank

Prep Type: Total/NA

мв мв Analyte Result Qualifier RL MDL Unit Prepared Analyzed Dil Fac Chloride 1.0 U 1.0 mg/L 02/11/15 12:39

Lab Sample ID: LCS 680-370556/13

Matrix: Water

Analysis Batch: 370556

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Spike LCS LCS %Rec. Analyte Added Result Unit %Rec Limits Chloride 25.0 25.8 mg/L 103 85 - 115

Lab Sample ID: MB 680-370558/5

Matrix: Water

Analysis Batch: 370558

Client Sample ID: Method Blank

Prep Type: Total/NA

MB MB Analyte Result Qualifier RL MDL Unit Prepared Analyzed Dil Fac Chloride 1.0 Ū 1.0 mg/L 02/11/15 11:53

> TestAmerica Savannah LAB 4/7/15

Client: Solutia Inc.

Project/Site: 1Q15 LTM GW Sampling - 1403345

TestAmerica Job ID: 680-109694-1

SDG: KPS139

Method: 325.2 - Chloride (Continued)

Lab Sample ID: LCS 680-370558/15

Matrix: Water

Analysis Batch: 370558

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Spike LCS LCS %Rec. Added Result Qualifier Unit %Rec Limits Chloride 25.0 25.9 mg/L 104 85 - 115

Method: 353.2 - Nitrogen, Nitrate-Nitrite

Lab Sample ID: MB 680-369927/13

Matrix: Water

Analysis Batch: 369927

Client Sample ID: Method Blank

Prep Type: Total/NA

MB MB Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac Nitrate as N 0.050 U 0.050 mg/L 02/06/15 12:15

Lab Sample ID: LCS 680-369927/16

Matrix: Water

Analysis Batch: 369927

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Spike LCS LCS %Rec. Analyte Added Result Qualifier Unit D %Rec Limits Nitrate as N 0.500 0.521 mg/L 104 75 - 125 Nitrate Nitrite as N 1.00 1.02 mg/L 102 90 - 110 Nitrite as N 0.500 0.496 mg/L 99 90 - 110

Method: 375.4 - Sulfate

Lab Sample ID: MB 680-370564/58

Matrix: Water

Analyte

Analysis Batch: 370564

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Type: Total/NA

Sulfate

Lab Sample ID: LCS 680-370564/4 Matrix: Water

Analysis Batch: 370564

МВ МВ Result Qualifier RL MDL Unit D 5.0 U 5.0

mg/L

Prepared Dil Fac Analyzed 02/11/15 14:00

Client Sample ID: Lab Control Sample

Spike LCS LCS %Rec. Analyte Added

MR MR

Result Qualifier Unit %Rec Limits Sulfate 20.0 20.5 mg/L 102 75 - 125

Method: 415.1 - DOC

Lab Sample ID: MB 160-175823/43

Matrix: Water

Analysis Batch: 175823

Client Sample ID: Method Blank Prep Type: Dissolved

Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac Dissolved Organic Carbon 1.0 U 1.0 mg/L 02/24/15 17:05

TestAmerica Savannah

Client: Solutia Inc.

Project/Site: 1Q15 LTM GW Sampling - 1403345

TestAmerica Job ID: 680-109694-1

SDG: KPS139

Method: 415.1 - DOC (Continued)

Lab Sample ID: LCS 160-175823/44

Matrix: Water

Analysis Batch: 175823

Spike Added

10.0

LCS LCS

9.87

Result Qualifier Unit mg/L

%Rec 99

%Rec. Limits 90 - 110

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample

Prep Type: Dissolved

Method: 415.1 - TOC

Dissolved Organic Carbon

Lab Sample ID: MB 160-175822/4

Matrix: Water

Analyte

Analyte

Analysis Batch: 175822

MB MB

Result Qualifier 1.0 U

RL 1.0 MDL Unit mg/L Prepared

Analyzed Dil Fac 02/24/15 12:28

Prep Type: Total/NA

Prep Type: Total/NA

Lab Sample ID: LCS 160-175822/5

Matrix: Water

Total Organic Carbon

Total Organic Carbon

Analysis Batch: 175822

Spike Added 10.0

LCS LCS Result Qualifier

9.67

Unit mg/L %Rec 97

%Rec. Limits 90 - 110

Client Sample ID: Lab Control Sample

TestAmerica Savannah LAB 4/7/15

Client: Solutia Inc.

Project/Site: 1Q15 LTM GW Sampling - 1403345

TestAmerica Job ID: 680-109694-1

SDG: KPS139

GC/MS VOA

Ana	lysis	Batch:	371316
-----	-------	--------	--------

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method Prep Batch
680-109694-1	BSA-MW-5D-0215	Total/NA	Water	8260B
680-109694-7	CPA-MW-4D-0215	Total/NA	Water	8260B
LCS 680-371316/4	Lab Control Sample	Total/NA	Water	8260B
LCSD 680-371316/5	Lab Control Sample Dup	Total/NA	Water	8260B
MB 680-371316/8	Method Blank	Total/NA	Water	8260B

Analysis Batch: 371318

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-109694-1 MS	BSA-MW-5D-0215	Total/NA	Water	8260B	- 1100 Dutoi
680-109694-1 MSD	BSA-MW-5D-0215	Total/NA	Water	8260B	
680-109694-3	BSA-MW-4D-0215	Total/NA	Water	8260B	
680-109694-5	BSA-MW-2D-0215	Total/NA	Water	8260B	
680-109694-9	CPA-MW-3D-0215	Total/NA	Water	8260B	
680-109694-11	CPA-MW-3D-0215-AD	Total/NA	Water	8260B	
680-109694-12	CPA-MW-2D-0215	Total/NA	Water	8260B	
680-109694-14	CPA-MW-2D-0215-AD	Total/NA	Water	8260B	
680-109694-15	1Q15 LTM Trip Blank #4	Total/NA	Water	8260B	
LCS 680-371318/4	Lab Control Sample	Total/NA	Water	8260B	
LCSD 680-371318/5	Lab Control Sample Dup	Total/NA	Water	8260B	
MB 680-371318/8	Method Blank	Total/NA	Water	8260B	

GC/MS Semi VOA

Prep Batch: 370098

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-109694-1	BSA-MW-5D-0215	Total/NA	Water	3520C	
680-109694-1 MS	BSA-MW-5D-0215	Total/NA	Water	3520C	
680-109694-1 MSD	BSA-MW-5D-0215	Total/NA	Water	3520C	
680-109694-3	BSA-MW-4D-0215	Total/NA	Water	3520C	
680-109694-5	BSA-MW-2D-0215	Total/NA	Water	3520C	
680-109694-7	CPA-MW-4D-0215	Total/NA	Water	3520C	
680-109694-9	CPA-MW-3D-0215	Total/NA	Water	3520C	
680-109694-11	CPA-MW-3D-0215-AD	Total/NA	Water	3520C	
680-109694-12	CPA-MW-2D-0215	Total/NA	Water	3520C	
680-109694-14	CPA-MW-2D-0215-AD	Total/NA	Water	3520C	
LCS 680-370098/13-A	Lab Control Sample	Total/NA	Water	3520C	
MB 680-370098/12-A	Method Blank	Total/NA	Water	3520C	

Analysis Batch: 370908

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-109694-1	BSA-MW-5D-0215	Total/NA	Water	8270D	370098
680-109694-1 MS	BSA-MW-5D-0215	Total/NA	Water	8270D	370098
680-109694-1 MSD	BSA-MW-5D-0215	Total/NA	Water	8270D	370098
680-109694-3	BSA-MW-4D-0215	Total/NA	Water	8270D	370098
680-109694-5	BSA-MW-2D-0215	Total/NA	Water	8270D	370098
680-109694-9	CPA-MW-3D-0215	Total/NA	Water	8270D	370098
680-109694-11	CPA-MW-3D-0215-AD	Total/NA	Water	8270D	370098
680-109694-12	CPA-MW-2D-0215	Total/NA	Water	8270D	370098
680-109694-14	CPA-MW-2D-0215-AD	Total/NA	Water	8270D	370098
LCS 680-370098/13-A	Lab Control Sample	Total/NA	Water	8270D	370098

TestAmerica Savannah

Client: Solutia Inc.

Project/Site: 1Q15 LTM GW Sampling - 1403345

TestAmerica Job ID: 680-109694-1

SDG: KPS139

GC/MS Semi VOA (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-109694-7	CPA-MW-4D-0215	Total/NA	Water	8270D	370098
MB 680-370098/12-A	Method Blank	Total/NA	Water	8270D	370098

Prep Batch: 371177

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-109694-14 - RE	CPA-MW-2D-0215-AD	Total/NA	Water	3520C	
LCS 680-371177/5-A	Lab Control Sample	Total/NA	Water	3520C	
LCSD 680-371177/6-A	Lab Control Sample Dup	Total/NA	Water	3520C	
MB 680-371177/4-A	Method Blank	Total/NA	Water	3520C	

Analysis Batch: 371444

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-109694-14 - RE	CPA-MW-2D-0215-AD	Total/NA	Water	8270D	371177
LCS 680-371177/5-A	Lab Control Sample	Total/NA	Water	8270D	371177
LCSD 680-371177/6-A	Lab Control Sample Dup	Total/NA	Water	8270D	371177
MB 680-371177/4-A	Method Blank	Total/NA	Water	8270D	371177

GC VOA

Analysis Batch: 370430

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-109694-3	BSA-MW-4D-0215	Total/NA	Water	RSK-175	
LCS 680-370430/5	Lab Control Sample	Total/NA	Water	RSK-175	
LCSD 680-370430/6	Lab Control Sample Dup	Total/NA	Water	RSK-175	
MB 680-370430/7	Method Blank	Total/NA	Water	RSK-175	

Analysis Batch: 370975

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-109694-1	BSA-MW-5D-0215	Total/NA	Water	RSK-175	
680-109694-5	BSA-MW-2D-0215	Total/NA	Water	RSK-175	
680-109694-7	CPA-MW-4D-0215	Total/NA	Water	RSK-175	
680-109694-9	CPA-MW-3D-0215	Total/NA	Water	RSK-175	
680-109694-12	CPA-MW-2D-0215	Total/NA	Water	RSK-175	
LCS 680-370975/2	Lab Control Sample	Total/NA	Water	RSK-175	
LCSD 680-370975/32	Lab Control Sample Dup	Total/NA	Water	RSK-175	
MB 680-370975/7	Method Blank	Total/NA	Water	RSK-175	

Analysis Batch: 371304

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-109694-1	BSA-MW-5D-0215	Total/NA	Water	RSK-175	
680-109694-5	BSA-MW-2D-0215	Total/NA	Water	RSK-175	
680-109694-7	CPA-MW-4D-0215	Total/NA	Water	RSK-175	
680-109694-9	CPA-MW-3D-0215	Total/NA	Water	RSK-175	
680-109694-12	CPA-MW-2D-0215	Total/NA	Water	RSK-175	
LCS 680-371304/5	Lab Control Sample	Total/NA	Water	RSK-175	
LCSD 680-371304/32	Lab Control Sample Dup	Total/NA	Water	RSK-175	
MB 680-371304/7	Method Blank	Total/NA	Water	RSK-175	

TestAmerica Savannah

Client: Solutia Inc.

Project/Site: 1Q15 LTM GW Sampling - 1403345

TestAmerica Job ID: 680-109694-1

SDG: KPS139

Metals

Prep Batch: 37	0350
----------------	------

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-109694-1	BSA-MW-5D-0215	Total Recoverable	Water	3005A	
680-109694-2	BSA-MW-5D-F(0.2)-0215	Dissolved	Water	3005A	
680-109694-3	BSA-MW-4D-0215	Total Recoverable	Water	3005A	
680-109694-4	BSA-MW-4D-F(0.2)-0215	Dissolved	Water	3005A	
680-109694-5	BSA-MW-2D-0215	Total Recoverable	Water	3005A	
680-109694-6	BSA-MW-2D-F(0.2)-0215	Dissolved	Water	3005A	
LCS 680-370350/2-A	Lab Control Sample	Total Recoverable	Water	3005A	
MB 680-370350/1-A	Method Blank	Total Recoverable	Water	3005A	

Prep Batch: 370514

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-109694-7	CPA-MW-4D-0215	Total Recoverable	Water	3005A	
680-109694-8	CPA-MW-4D-F(0.2)-0215	Dissolved	Water	3005A	
680-109694-8 MS	CPA-MW-4D-F(0.2)-0215	Dissolved	Water	3005A	
680-109694-8 MSD	CPA-MW-4D-F(0.2)-0215	Dissolved	Water	3005A	
680-109694-9	CPA-MW-3D-0215	Total Recoverable	Water	3005A	
680-109694-10	CPA-MW-3D-F(0.2)-0215	Dissolved	Water	3005A	
680-109694-12	CPA-MW-2D-0215	Total Recoverable	Water	3005A	
680-109694-13	CPA-MW-2D-F(0.2)-0215	Dissolved	Water	3005A	
LCS 680-370514/2-A	Lab Control Sample	Total Recoverable	Water	3005A	
MB 680-370514/1-A	Method Blank	Total Recoverable	Water	3005A	

Analysis Batch: 370667

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-109694-1	BSA-MW-5D-0215	Total Recoverable	Water	6010C	370350
680-109694-2	BSA-MW-5D-F(0.2)-0215	Dissolved	Water	6010C	370350
680-109694-3	BSA-MW-4D-0215	Total Recoverable	Water	6010C	370350
680-109694-4	BSA-MW-4D-F(0.2)-0215	Dissolved	Water	6010C	370350
680-109694-5	BSA-MW-2D-0215	Total Recoverable	Water	6010C	370350
680-109694-6	BSA-MW-2D-F(0.2)-0215	Dissolved	Water	6010C	370350
LCS 680-370350/2-A	Lab Control Sample	Total Recoverable	Water	6010C	370350
MB 680-370350/1-A	Method Blank	Total Recoverable	Water	6010C	370350

Analysis Batch: 370847

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-109694-7	CPA-MW-4D-0215	Total Recoverable	Water	6010C	370514
680-109694-8	CPA-MW-4D-F(0.2)-0215	Dissolved	Water	6010C	370514
680-109694-8 MS	CPA-MW-4D-F(0.2)-0215	Dissolved	Water	6010C	370514
680-109694-8 MSD	CPA-MW-4D-F(0.2)-0215	Dissolved	Water	6010C	370514
680-109694-9	CPA-MW-3D-0215	Total Recoverable	Water	6010C	370514
680-109694-10	CPA-MW-3D-F(0.2)-0215	Dissolved	Water	6010C	370514
680-109694-12	CPA-MW-2D-0215	Total Recoverable	Water	6010C	370514
680-109694-13	CPA-MW-2D-F(0.2)-0215	Dissolved	Water	6010C	370514
LCS 680-370514/2-A	Lab Control Sample	Total Recoverable	Water	6010C	370514
MB 680-370514/1-A	Method Blank	Total Recoverable	Water	6010C	370514

Client: Solutia Inc.

LCS 680-370556/13

MB 680-370556/23

Lab Control Sample

Method Blank

Project/Site: 1Q15 LTM GW Sampling - 1403345

TestAmerica Job ID: 680-109694-1

SDG: KPS139

General Chemistry Analysis Batch: 175822 Lab Sample ID Client Sample ID Prep Type Matrix Method Prep Batch 680-109694-1 BSA-MW-5D-0215 Total/NA Water 415.1 680-109694-3 BSA-MW-4D-0215 Total/NA Water 415.1 680-109694-5 BSA-MW-2D-0215 Total/NA Water 415.1 680-109694-7 CPA-MW-4D-0215 Total/NA Water 415.1 680-109694-9 CPA-MW-3D-0215 Total/NA Water 415.1 680-109694-12 CPA-MW-2D-0215 Total/NA Water 415 1 LCS 160-175822/5 Lab Control Sample Total/NA Water 415.1 MB 160-175822/4 Method Blank Total/NA Water 415.1 Analysis Batch: 175823 Lab Sample ID Client Sample ID Prep Type Matrix Method Prep Batch 680-109694-2 BSA-MW-5D-F(0.2)-0215 Dissolved Water 415.1 680-109694-4 BSA-MW-4D-F(0.2)-0215 Dissolved Water 415.1 680-109694-6 BSA-MW-2D-F(0.2)-0215 Water Dissolved 415.1 680-109694-8 CPA-MW-4D-F(0.2)-0215 Dissolved Water 415.1 680-109694-10 CPA-MW-3D-F(0.2)-0215 Dissolved Water 415.1 680-109694-13 CPA-MW-2D-F(0.2)-0215 Dissolved Water 415 1 LCS 160-175823/44 Lab Control Sample Dissolved Water 415.1 MB 160-175823/43 Method Blank Dissolved Water 415.1 Analysis Batch: 369927 Lab Sample ID Client Sample ID Prep Type Matrix Method Prep Batch 680-109694-1 Water BSA-MW-5D-0215 Total/NA 353.2 680-109694-3 BSA-MW-4D-0215 Total/NA Water 353.2 680-109694-5 BSA-MW-2D-0215 Total/NA Water 353.2 680-109694-7 CPA-MW-4D-0215 Total/NA Water 353.2 680-109694-9 CPA-MW-3D-0215 Total/NA Water 353.2 680-109694-12 CPA-MW-2D-0215 Total/NA Water 353.2 LCS 680-369927/16 Lab Control Sample Total/NA Water 353.2 MB 680-369927/13 Method Blank Total/NA Water 353.2 Analysis Batch: 370058 Lab Sample ID Client Sample ID Matrix Prep Type Method Prep Batch 680-109694-1 BSA-MW-5D-0215 Total/NA Water 310.1 680-109694-3 BSA-MW-4D-0215 Total/NA Water 310.1 680-109694-5 BSA-MW-2D-0215 Total/NA Water 310.1 680-109694-7 CPA-MW-4D-0215 Total/NA Water 310.1 680-109694-9 CPA-MW-3D-0215 Total/NA Water 310.1 680-109694-12 CPA-MW-2D-0215 Total/NA Water 310.1 680-109694-12 DU CPA-MW-2D-0215 Total/NA Water 310.1 LCS 680-370058/6 Lab Control Sample Total/NA Water 310 1 LCSD 680-370058/26 Lab Control Sample Dup Total/NA Water 310.1 MB 680-370058/5 Method Blank Total/NA Water 310.1 Analysis Batch: 370556 Lab Sample ID Client Sample ID Prep Type Matrix Method Prep Batch 680-109694-1 BSA-MW-5D-0215 Total/NA Water 325.2

Total/NA

Total/NA

Water

Water

325.2

325.2

Client: Solutia Inc.

Project/Site: 1Q15 LTM GW Sampling - 1403345

TestAmerica Job ID: 680-109694-1

SDG: KPS139

General Chemistry (Continued)

Analysis Batch: 370558

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-109694-3	BSA-MW-4D-0215	Total/NA	Water	325.2	
680-109694-5	BSA-MW-2D-0215	Total/NA	Water	325.2	
680-109694-7	CPA-MW-4D-0215	Total/NA	Water	325.2	
680-109694-9	CPA-MW-3D-0215	Total/NA	Water	325.2	
680-109694-12	CPA-MW-2D-0215	Total/NA	Water	325.2	
LCS 680-370558/15	Lab Control Sample	Total/NA	Water	325.2	
MB 680-370558/5	Method Blank	Total/NA	Water	325.2	

Analysis Batch: 370564

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-109694-1	BSA-MW-5D-0215	Total/NA	Water	375.4	
680-109694-3	BSA-MW-4D-0215	Total/NA	Water	375.4	
680-109694-5	BSA-MW-2D-0215	Total/NA	Water	375.4	
680-109694-7	CPA-MW-4D-0215	Total/NA	Water	375.4	
680-109694-9	CPA-MW-3D-0215	Total/NA	Water	375.4	
680-109694-12	CPA-MW-2D-0215	Total/NA	Water	375.4	
LCS 680-370564/4	Lab Control Sample	Total/NA	Water	375.4	
MB 680-370564/58	Method Blank	Total/NA	\Mater	375.4	

Client: Solutia Inc.

Project/Site: 1Q15 LTM GW Sampling - 1403345

TestAmerica Job ID: 680-109694-1

SDG: KPS139

Client Sample ID: BSA-MW-5D-0215

Date Collected: 02/05/15 10:25 Date Received: 02/06/15 09:27 Lab Sample ID: 680-109694-1

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		2	371316	02/18/15 16:30	MMT	TAL SAV
Total/NA	Prep	3520C			370098	02/09/15 16:25	RBS	TAL SAV
Total/NA	Analysis	8270D		1	370908	02/13/15 20:32	RAM	TAL SAV
Total/NA	Analysis	RSK-175		1	370975	02/16/15 13:47	AJMC	TAL SAV
Total/NA	Analysis	RSK-175		1	371304	02/18/15 14:09	AJMC	TAL SAV
Total Recoverable	Prep	3005A			370350	02/10/15 13:15	CRW	TAL SAV
Total Recoverable	Analysis	6010C		1	370667	02/11/15 17:52	всв	TAL SAV
Total/NA	Analysis	310.1		1	370058	02/07/15 18:31	LBH	TAL SAV
Total/NA	Analysis	325.2		5	370556	02/11/15 12:52	JME	TAL SAV
Total/NA	Analysis	353.2		1	369927	02/06/15 12:29	GRX	TAL SAV
Total/NA	Analysis	375.4		1	370564	02/11/15 12:01	JME	TAL SAV
Total/NA	Analysis	415.1		1	175822	02/24/15 14:27	JCB	TAL SL

Client Sample ID: BSA-MW-5D-F(0.2)-0215

Date Collected: 02/05/15 10:25

Date Received: 02/06/15 09:27

Lab Sample ID: 680-109694-2

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Dissolved	Prep	3005A		-	370350	02/10/15 13:15	CRW	TAL SAV
Dissolved	Analysis	6010C		1	370667	02/11/15 17:57	всв	TAL SAV
Dissolved	Analysis	415.1		1	175823	02/24/15 19:30	JCB	TAL SL

Client Sample ID: BSA-MW-4D-0215

Date Collected: 02/05/15 11:44 Date Received: 02/06/15 09:27 Lab Sample ID: 680-109694-3

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		20	371318	02/18/15 11:01	MMT	TAL SAV
Total/NA	Prep	3520C			370098	02/09/15 16:25	RBS	TAL SAV
Total/NA	Analysis	8270D		1	370908	02/13/15 20:57	RAM	TAL SAV
Total/NA	Analysis	RSK-175		1	370430	02/11/15 11:12	AJMC	TAL SAV
Total Recoverable	Prep	3005A			370350	02/10/15 13:15	CRW	TAL SAV
Total Recoverable	Analysis	6010C		1	370667	02/11/15 18:02	всв	TAL SAV
Total/NA	Analysis	310.1		1	370058	02/08/15 11:53	LBH	TAL SAV
Total/NA	Analysis	325.2		2	370558	02/11/15 13:03	JME	TAL SAV
Total/NA	Analysis	353.2		1	369927	02/06/15 12:31	GRX	TAL SAV
Total/NA	Analysis	375.4		5	370564	02/11/15 13:11	JME	TAL SAV
Total/NA	Analysis	415.1		1	175822	02/24/15 14:32	JCB	TAL SL

TestAmerica Savannah

CAB 4/7/15

Client: Solutia Inc.

Project/Site: 1Q15 LTM GW Sampling - 1403345

TestAmerica Job ID: 680-109694-1

SDG: KPS139

Client Sample ID: BSA-MW-4D-F(0.2)-0215

Date Collected: 02/05/15 11:44 Date Received: 02/06/15 09:27 Lab Sample ID: 680-109694-4

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Dissolved	Prep	3005A			370350	02/10/15 13:15	CRW	TAL SAV
Dissolved	Analysis	6010C		1	370667	02/11/15 18:06	всв	TAL SAV
Dissolved	Analysis	415.1		1	175823	02/24/15 19:59	JCB	TAL SL

Client Sample ID: BSA-MW-2D-0215

Date Collected: 02/05/15 13:25 Date Received: 02/06/15 09:27 Lab Sample ID: 680-109694-5

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1000	371318	02/18/15 11:24	MMT	TAL SAV
Total/NA	Prep	3520C			370098	02/09/15 16:25	RBS	TAL SAV
Total/NA	Analysis	8270D		1	370908	02/13/15 21:23	RAM	TAL SAV
Total/NA	Analysis	RSK-175		1	370975	02/16/15 14:05	AJMC	TAL SAV
Total/NA	Analysis	RSK-175		1	371304	02/18/15 14:22	AJMC	TAL SAV
Total Recoverable	Prep	3005A			370350	02/10/15 13:15	CRW	TAL SAV
Total Recoverable	Analysis	6010C		1	370667	02/11/15 18:11	всв	TAL SAV
Total/NA	Analysis	310.1		1	370058	02/08/15 12:04	LBH	TAL SAV
Total/NA	Analysis	325.2		5	370558	02/11/15 12:52	JME	TAL SAV
Total/NA	Analysis	353.2		1	369927	02/06/15 12:33	GRX	TAL SAV
Total/NA	Analysis	375.4		1	370564	02/11/15 12:05	JME	TAL SAV
Total/NA	Analysis	415.1		1	175822	02/24/15 15:00	JCB	TAL SL

Client Sample ID: BSA-MW-2D-F(0.2)-0215

Date Collected: 02/05/15 13:25 Date Received: 02/06/15 09:27 Lab Sample ID: 680-109694-6

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Dissolved	Prep	3005A			370350	02/10/15 13:15	CRW	TAL SAV
Dissolved	Analysis	6010C		1	370667	02/11/15 17:48	всв	TAL SAV
Dissolved	Analysis	415.1		1	175823	02/24/15 20:04	JCB	TAL SL

Client Sample ID: CPA-MW-4D-0215

Date Collected: 02/05/15 09:33 Date Received: 02/06/15 09:27 Lab Sample ID: 680-109694-7

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		2	371316	02/18/15 16:51	MMT	TAL SAV
Total/NA	Prep	3520C			370098	02/09/15 16:25	RBS	TAL SAV
Total/NA	Analysis	8270D		1	371019	02/14/15 22:57	RAM	TAL SAV
Total/NA	Analysis	RSK-175		1	370975	02/16/15 14:17	AJMC	TAL SAV
Total/NA	Analysis	RSK-175		1	371304	02/18/15 14:35	AJMC	TAL SAV
Total Recoverable	Prep	3005A			370514	02/11/15 13:40	CRW	TAL SAV

TestAmerica Savannah

Client: Solutia Inc.

Project/Site: 1Q15 LTM GW Sampling - 1403345

TestAmerica Job ID: 680-109694-1

SDG: KPS139

Client Sample ID: CPA-MW-4D-0215

Date Collected: 02/05/15 09:33 Date Received: 02/06/15 09:27 Lab Sample ID: 680-109694-7

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total Recoverable	Analysis	6010C		1	370847	02/13/15 01:46	ВСВ	TAL SAV
Total/NA	Analysis	310.1		1	370058	02/08/15 12:13	LBH	TAL SAV
Total/NA	Analysis	325.2		5	370558	02/11/15 12:52	JME	TAL SAV
Total/NA	Analysis	353.2		1	369927	02/06/15 12:34	GRX	TAL SAV
Total/NA	Analysis	375.4		1	370564	02/11/15 12:05	JME	TAL SAV
Total/NA	Analysis	415.1		1	175822	02/24/15 15:05	JCB	TAL SL

Client Sample ID: CPA-MW-4D-F(0.2)-0215

Date Collected: 02/05/15 09:33 Date Received: 02/06/15 09:27 Lab Sample ID: 680-109694-8

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Dissolved	Prep	3005A			370514	02/11/15 13:40	CRW	TAL SAV
Dissolved	Analysis	6010C		1	370847	02/13/15 01:23	всв	TAL SAV
Dissolved	Analysis	415.1		1	175823	02/24/15 20:09	JCB	TAL SL

Client Sample ID: CPA-MW-3D-0215

Date Collected: 02/05/15 12:45

Date Received: 02/06/15 09:27

Lab Sample ID: 680-109694-9

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		100	371318	02/18/15 11:46	MMT	TAL SAV
Total/NA	Prep	3520C			370098	02/09/15 16:25	RBS	TAL SAV
Total/NA	Analysis	8270D		1	370908	02/13/15 22:14	RAM	TAL SAV
Total/NA	Analysis	RSK-175		1	370975	02/16/15 14:30	AJMC	TAL SAV
Total/NA	Analysis	RSK-175		1	371304	02/18/15 14:50	AJMC	TAL SAV
Total Recoverable	Prep	3005A			370514	02/11/15 13:40	CRW	TAL SAV
Total Recoverable	Analysis	6010C		1	370847	02/13/15 01:51	BCB	TAL SAV
Total/NA	Analysis	310.1		1	370058	02/08/15 12:24	LBH	TAL SAV
Total/NA	Analysis	325.2		10	370558	02/11/15 13:28	JME	TAL SAV
Total/NA	Analysis	353.2		1	369927	02/06/15 12:35	GRX	TAL SAV
Total/NA	Analysis	375.4		1	370564	02/11/15 12:06	JME	TAL SAV
Total/NA	Analysis	415.1		1	175822	02/24/15 15:10	JCB	TAL SL

Client Sample ID: CPA-MW-3D-F(0.2)-0215

Date Collected: 02/05/15 12:45

Date Received: 02/06/15 09:27

Lab Sample ID: 680-109694-10

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Dissolved	Prep	3005A			370514	02/11/15 13:40	CRW	TAL SAV
Dissolved	Analysis	6010C		1	370847	02/13/15 01:55	BCB	TAL SAV

TestAmerica Savannah

Client: Solutia Inc.

Project/Site: 1Q15 LTM GW Sampling - 1403345

TestAmerica Job ID: 680-109694-1

SDG: KPS139

Client Sample ID: CPA-MW-3D-F(0.2)-0215

Date Collected: 02/05/15 12:45 Date Received: 02/06/15 09:27 Lab Sample ID: 680-109694-10

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Dissolved	Analysis	415.1		1	175823	02/24/15 20:14	JCB	TAL SL

Client Sample ID: CPA-MW-3D-0215-AD

Date Collected: 02/05/15 12:45 Date Received: 02/06/15 09:27 Lab Sample ID: 680-109694-11

Matrix: Water

en inst	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		100	371318	02/18/15 12:09	MMT	TAL SAV
Total/NA	Prep	3520C			370098	02/09/15 16:25	RBS	TAL SAV
Total/NA	Analysis	8270D		1	370908	02/13/15 22:39	RAM	TAL SAV

Client Sample ID: CPA-MW-2D-0215

Date Collected: 02/05/15 14:15 Date Received: 02/06/15 09:27 Lab Sample ID: 680-109694-12

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		250	371318	02/18/15 12:31	MMT	TAL SAV
Total/NA	Prep	3520C			370098	02/09/15 16:25	RBS	TAL SAV
Total/NA	Analysis	8270D		1	370908	02/13/15 23:04	RAM	TAL SAV
Total/NA	Analysis	RSK-175		1	370975	02/16/15 14:43	AJMC	TAL SAV
Total/NA	Analysis	RSK-175		1	371304	02/18/15 15:18	AJMC	TAL SAV
Total Recoverable	Prep	3005A			370514	02/11/15 13:40	CRW	TAL SAV
Total Recoverable	Analysis	6010C		1	370847	02/13/15 02:09	всв	TAL SAV
Total/NA	Analysis	310.1		1	370058	02/08/15 12:32	LBH	TAL SAV
Total/NA	Analysis	325.2		2	370558	02/11/15 13:03	JME	TAL SAV
Total/NA	Analysis	353.2		1	369927	02/06/15 12:36	GRX	TAL SAV
Total/NA	Analysis	375.4		2	370564	02/11/15 13:11	JME	TAL SAV
Total/NA	Analysis	415.1		1	175822	02/24/15 15:16	JCB	TAL SL

Client Sample ID: CPA-MW-2D-F(0.2)-0215

Date Collected: 02/05/15 14:15 Date Received: 02/06/15 09:27 Lab Sample ID: 680-109694-13

Matrix: Water

Prep Type	Batch Type	Batch Method	Run	Dilution Factor	Batch Number	Prepared or Analyzed	Analyst	Lab
Dissolved	Prep	3005A			370514	02/11/15 13:40	CRW	TAL SAV
Dissolved	Analysis	6010C		1	370847	02/13/15 02:14	ВСВ	TAL SAV
Dissolved	Analysis	415.1		1	175823	02/24/15 20:24	JCB	TAL SL

12

Client: Solutia Inc.

Project/Site: 1Q15 LTM GW Sampling - 1403345

TestAmerica Job ID: 680-109694-1

SDG: KPS139

Client Sample ID: CPA-MW-2D-0215-AD

Date Collected: 02/05/15 14:15 Date Received: 02/06/15 09:27 Lab Sample ID: 680-109694-14

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		250	371318	02/18/15 12:54	MMT	TAL SAV
Total/NA	Prep	3520C	RE		371177	02/17/15 15:36	RBS	TAL SAV
Total/NA	Analysis	8270D	RE	1	371444	02/18/15 21:43	RAM	TAL SAV
Total/NA	Prep	3520C			370098	02/09/15 16:25	RBS	TAL SAV
Total/NA	Analysis	8270D		1	370908	02/13/15 23:30	RAM	TAL SAV

Client Sample ID: 1Q15 LTM Trip Blank #4

Date Collected: 02/05/15 00:00 Date Received: 02/06/15 09:27 Lab Sample ID: 680-109694-15

Matrix: Water

		Batch	Batch		Dilution	Batch	Prepared		
-	Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
***************************************	Total/NA	Analysis	8260B		1	371318	02/18/15 09:53	MMT	TAL SAV

Laboratory References:

TAL SAV = TestAmerica Savannah, 5102 LaRoche Avenue, Savannah, GA 31404, TEL (912)354-7858 TAL SL = TestAmerica St. Louis, 13715 Rider Trail North, Earth City, MO 63045, TEL (314)298-8566

12

TestAmerica Savannah 5102 LaRoche Avenue

Savannah, GA 31404

Record
Custody
Chain of

phone 912.354.7858 fax	Regulatory Program: Dw	NPDES [2] RCRA [] Other:	TestAmerica Laboratories, Inc.	ries, Inc.
Client Contact	Project Manager: Amanda Derhake	Site Contact: Lori Bindner Date:	2/5/15 COC No:	
Golder Associates Inc.	Tel/Fax: 636-724-9191	Lab Contact: Michele Kersey Carrier:	Fedex i of 2 cocs	
820 South Main Street	Analysis Turnaround Time	<i>\pu</i>	Sampler:	
St. Charles, MO 63301	∠ CALENDAR DAYS		For Lab Use Only:	
(636) 724-9191 Phone	TAT if different from Below Standard	γ) (γ)	Walk-in Client:	
(636) 724-9323 FAX		SK ste	Lab Sampling:	
Project Name: 1Q15 LTM GW Sampling-1403345	1 week	10C		
Site: Solutia WG Krummrich Facility	2 days	MSI 0.1 5.2/ 6.2/ 6.3/ 6.3/	Job / SDG No.:	
P O # 42447936	1 day	260 260 363. 363. 363.		
Sample Identification	Sample Sample (C=Comp.) Date Time G=Gab. Matrix Cont.	Fillered Signal Perform M South Perform M South Perform M South Perform M South Perform M South Perform Performed by 3 Mittake by 3 Mit	Sample Specific Notes	·
BSA-MW-5D-0215	2/5/15 1025 B W 16	23111323		
BSA-MW-5D-F(0.2)-02157	P 1 1 4	1 y		
BSA-MW-5D-0215-MS	9	2.3		
BSA-MW-5D-0215-MSD	SITI	23		
8BSA-MW-4D-0215	9/	231111323		
\$85A-MW-4D-F(0,2)-0215	1	1 3		
985A-MW-2D-0215	1325	231111523		
\$BSA-MW-2D-F(0,2) -0215	7	7		
CPA-MW-4D-0215	16	23111323		
CPA-MW-4D-F(0,2)-02.15	カー・ナー	V -	422	
CPA-MW-3D-0215	91 545	23111323] :
CPA-MW-3D-F(0,2)-0215	7 1 1	8	680-109694 Chain of Custody	T
Preservation Used 1= (ce., 2= HC), 3= H2SO4, 4=HNO3, 5=NaOH, 6= Other	-NaoH, 6= Other	THE TOTAL STATES OF THE STATES		
ible Hazard Identification: ny samples from a listed EPA Hazardous Waste? ments Section if the lab is to dispose of the sample.	Please List any EPA Waste Codes for the sample in the		Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)	
✓ Non-Hazard	Poison B Unknown	Return to Client	b Archive for Months	
Special Instructions/QC Requirements & Comments: VOC headspace upon sampling: Yes/No				
Custody Seels Intert	12100	n Conjer Temp (VC): Ohe'd:	Condd. Thomas ID Ma.	
Relinguished by:	51.7.2.15	Social remp. (C). Oscial		
- Infingually by.	(2010a.y.	The Contraction of the Contracti	THSAU Date/Ime:	F
Relinquished by:		Reperved by:	Company: Date/Time:	
Relinquished by:	Company: Date/Time:	Received in Cooperatory by 1694 Co	Company: -S/2,0(PF) -5/	100
		ر	Form No. CA-C-WI-002, Rev. 4.3, dated 12/05/2013	/05/2013

Chain of Custody Record

TestAmerica Savannah

5102 LaRoche Avenue

TestAmerica THE LEADER IN ENVIRONMENTAL TESTING

TestAmerica Laboratories, Inc. Sample Specific Notes: Z of 2 Sample Disposal (A fee may be assessed if samples are retained longer than 1 month) For Lab Use Only: Months Walk-in Client: Job / SDG No. ab Sampling: COC No. Sampler Archive for ナペタグ Date: 4/5 /15 Disposal by Lab Carrier: 20C by 415.1 3 Oissolved Fe/Mn by 6010C LOC by 415.1 M > 2 Lab Contact: Michele Kersey Dissolved Gases by RSK 175 3 Site Contact: Lori Bindner Other: hloride by 325.2/Sulfate by 375.4 Return to Client otal Fe/Mn by 6010C RCRA 3 OCs pl 8260 3 7 N NPDES < Perform MS / MSD (Y / N) Filtered Sample (Y / N) # of Cont 9 Ŋ Are any samples from a listed EPA Hazardous Waste? Please List any EPA Waste Codes for the sample in the 7 7 0 ☐ WORKING DAYS MO Matrix 3 TAT if different from Below Standard Analysis Turnaround Time Project Manager: Amanda Derhake Unknown Type (C=Comp, G=Grab) Regulatory Program: 2 weeks 1 week 2 days 1 day **Tel/Fax**: 636-724-9191 ✓ CALENDAR DAYS Sample Time 1415 1245 Poison B 2/5/15 Sample Skin Irritant Special Instructions/QC Requirements & Comments: VOC headspace upon sampling: Yes(No) Comments Section if the lab is to dispose of the sample Trip Blank #4 Project Name: 1Q15 LTM GW Sampling-1403345 2170 Sample Identification 1PA - MW-2D-0215-AD PA-MW-30-0215-AD Phone Client Contact Flammable 72A-MW-2D-F6.2 Site: Solutia WG Krummrich Facility PA-MW-2D-0215 ossible Hazard Identification: Savannah, GA 31404 phone 912.354.7858 fax 820 South Main Street St. Charles, MO 63301 Golder Associates Inc. Z F < Non-Hazard 0 # 42447936 (636) 724-9191 724-9323 Rais LAB

orm No. CA-C-WH-602, Rev. 4.3, dated 12/05/2013

Cate Time:

J.

Company:

Received in Capaba 1994

Date/Time: 0.8-15 Date/Time:

Therm ID No.

Corr'd:

Cooler Temp. (°C): Obs'd

Custody Seal No.: 4 | 93| < / 436 22 §

2/5/15 Date/Time:

Company:

Company:

Yes

Custody Seals Intact

manel

Selinquished by: Relinquished by:

7/15

delinquished by:

il

Date/Time:

Company:

Date/Time:

13

Login Sample Receipt Checklist

Client: Solutia Inc.

Job Number: 680-109694-1

SDG Number: KPS139

List Source: TestAmerica Savannah

Login Number: 109694

List Number: 1

Creator: Banda, Christy S

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	N/A	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

Login Sample Receipt Checklist

Client: Solutia Inc.

List Number: 2

Login Number: 109694

Creator: Clarke, Jill C

Job Number: 680-109694-1

SDG Number: KPS139

List Source: TestAmerica St. Louis

List Creation: 02/09/15 09:37 AM

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td>	True	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	(0.8)
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	False	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

TestAmerica Savannah

LAB 4/7/15

Certification Summary

Client: Solutia Inc.

Project/Site: 1Q15 LTM GW Sampling - 1403345

TestAmerica Job ID: 680-109694-1

SDG: KPS139

Laboratory: TestAmerica Savannah

All certifications held by this laboratory are listed. Not all certifications are applicable to this report.

Authority	Program	EPA Region	Certification ID	Expiration Date
	AFCEE		SAVLAB	
A2LA	DoD ELAP		399.01	02-28-17
A2LA	ISO/IEC 17025		399.01	02-28-17
Alabama	State Program	4	41450	06-30-15
Arkansas DEQ	State Program	6	88-0692	01-31-16
California	State Program	9	2939	07-31-15
Colorado	State Program	8	N/A	12-31-15
Connecticut	State Program	1	PH-0161	03-31-15 *
Florida	NELAP	4	E87052	06-30-15
GA Dept. of Agriculture	State Program	4	N/A	06-12-17
Georgia	State Program	4	N/A	06-30-15
Georgia	State Program	4	803	06-30-15
Guam	State Program	9	09-005r	04-16-15
Hawaii	State Program	9	N/A	06-30-15
Illinois	NELAP	5	200022	11-30-15
Indiana	State Program	5	N/A	06-30-15
lowa	State Program	7	353	07-01-15
Kentucky (DW)	State Program	4	90084	12-31-15
Kentucky (UST)	State Program	4	18	06-30-15
Kentucky (WW)	State Program	4	90084	12-31-15
_ouisiana	NELAP	6	30690	06-30-15
₋ouisiana (DW)	NELAP	· · · · · · · · · · · · · · · · · · ·	LA150014	12-31-15
Maine	State Program	1	GA00006	09-24-16
Maryland	State Program	3	250	12-31-15
/lassachusetts	State Program	1	M-GA006	06-30-15
<i>l</i> lichigan	State Program	5	9925	06-30-15
<i>M</i> ississippi	State Program	4	N/A	06-30-15
Montana	State Program		CERT0081	
Nebraska	State Program	7	TestAmerica-Savannah	12-31-15 06-30-15
New Jersey	NELAP	2	GA769	
New Mexico	State Program	6	N/A	06-30-15
New York	NELAP	2	10842	06-30-15
North Carolina (DW)	State Program	4	13701	03-31-15 *
North Carolina (WW/SW)	State Program	4	269	07-31-15
Oklahoma	State Program	6	9984	12-31-15
² ennsylvania	NELAP	3		08-31-15
Puerto Rico	State Program	2	68-00474	06-30-15
South Carolina	State Program	2 4	GA00006	12-31-15
ennessee	State Program	•	98001 TN00001	06-30-15
exas	NELAP	4	TN02961	06-30-15
SDA	Federal	6	T104704185-14-7	11-30-15
/irginia	NELAP	0	SAV 3-04	06-11-17
Vashington		3	460161	06-14-15
Vest Virginia (DW)	State Program	10	C805	06-10-15
Vest Virginia (DVV)	State Program	3	9950C	12-31-15
Visconsin	State Program	3	094	06-30-15
Vyoming	State Program	5	999819810	08-31-15
vyoning	State Program	8	8TMS-L	06-30-15

Laboratory: TestAmerica St. Louis

All certifications held by this laboratory are listed. Not all certifications are applicable to this report.

TestAmerica Savannah

^{*} Certification renewal pending - certification considered valid.

Certification Summary

Client: Solutia Inc.

Project/Site: 1Q15 LTM GW Sampling - 1403345

TestAmerica Job ID: 680-109694-1

SDG: KPS139

Laboratory: TestAmerica St. Louis (Continued)

All certifications held by this laboratory are listed. Not all certifications are applicable to this report.

Authority	Program	EPA Region	Certification ID	Expiration Date
Alaska	State Program	10	MO00054	06-30-15
California	NELAP	9	2886	03-31-15
Connecticut	State Program	1 .	PH-0241	03-31-15
Florida	NELAP	4	E87689	06-30-15
Illinois	NELAP	5	200023	11-30-15
lowa	State Program	7	373	12-01-16
Kansas	NELAP	7	E-10236	03-31-15 *
Kentucky (DW)	State Program	4	90125	12-31-15
L-A-B	DoD ELAP		L2305	01-10-16
Louisiana	NELAP	6	LA150017	12-31-16
Maryland	State Program	3	310	09-30-15
Missouri	State Program	7	780	06-30-15
Nevada	State Program	9	MO000542013-1	07-31-15
New Jersey	NELAP	2	MO002	06-30-15
New Mexico	State Program	6		06-30-10 *
New York	NELAP	2	11616	03-31-15 *
North Dakota	State Program	8	R207	06-30-15
NRC	NRC		24-24817-01	12-31-22
Oklahoma	State Program	6	9997	08-31-15
Pennsylvania	NELAP	3	68-00540	02-28-15 *
South Carolina	State Program	4	85002001	06-30-15
Texas	NELAP	6	T104704193-13-6	07-31-15
USDA	Federal		P330-07-00122	01-09-17
Utah	NELAP	8	MO000542013-5	07-31-15
Virginia	NELAP	3	460230	06-14-15
Washington	State Program	10	C592	08-30-15
West Virginia DEP	State Program	3	381	08-31-15

TestAmerica Savannah

^{*} Certification renewal pending - certification considered valid.

Level IV Data Validation Summary Solutia Inc., W.G. Krummrich, Sauget, Illinois 1Q15 Long-Term Monitoring Program

Company Name: Golder Associates Project Name: WGK-1Q15 LTM Reviewer: L. Bindner Laboratory: TestAmerica SDG#: KPS140 Matrix: Water	Project Manager: A Project Number: 14 Sample Date: Febru	10-334	15
Analytical Method: VOC (8260B), SVOC (8270D), Dissolved Gases (RSK-175), Metals Nitrogen, Nitrate-Nitrite (353.2), Sulfate (375.4), TOC (415.1), and DOC (415.1)	(6010C), Alkalinity (31	<u>0.1), (</u>	<u>Chloride (325.2),</u>
Sample Names: <u>BSA-MW-1S-0215</u> , <u>BSA-MW-1S-0215-EB</u> , <u>BSA-MW-1S-F(0.2)-0215</u> , <u>Cand 1Q15 LTM Trip Blank #5</u>	CPA-MW-1D-0215, CP	A-MV	/-1D-F(0.2)-0215
Field Information	YES	NO	NA
a) Sampling dates noted?	\boxtimes		
b) Does the laboratory narrative indicate deficiencies?	\boxtimes		
Comments:			
VOC: Samples BSA-MW-1S-0215, BSA-MW-1S-0215-EB and CPA-MW-5D-0215 require adjusted accordingly. Insufficient volume to perform MS/MSD associated with bat SVOC: No deficiencies noted.	uired dilution prior to a tch 371472 and batch	<u>1alysis</u> 37149	s, reporting limits 96.
Dissolved Gases: Insufficient volume to perform MS/MSD associated with batch 371	<u>305.</u>		
Metals: No deficiencies noted.			
Alkalinity: No deficiencies noted.			
Chloride: Samples BSA-MW-1S-0215 and CPA-MW-1D-0215 required dilution prior to accordingly.	o analysis, reporting lin	nits we	ere adjusted
Nitrate-Nitrite as Nitrogen: No deficiencies noted.			
Sulfate: Sample BSA-MW-1S-0215 required dilution prior to analysis, reporting limits v	were adjusted accordir	ıgly.	
TOC: Sample BSA-MW-1S-0215 required dilution prior to analysis, reporting limits were	re adjusted accordingly	<u>/.</u>	
DOC: Sample BSA-MW-1S-F(0.2)-0215 required dilution prior to analysis, reporting lin	nits were adjusted acc	ording	ıly.
Chain-of-Custody (COC)	YES	NO	NA
a) Was the COC signed by both field and laboratory personnel?	\boxtimes		
b) Were samples received in good condition?	\boxtimes		
Comments: Samples were received at 0.7°C, 1.3°C and 1.5°C, outside the 4°C +/-2°C	C criteria.		

	April 2015 2			140-3345
Gene	eral	YES	NO	NA
a)	Were hold times met for sample analysis?	\boxtimes		
b)	Were the correct preservatives used?	\boxtimes		
c)	Was the correct method used?	\boxtimes		
d)	Any sample dilutions noted?	\boxtimes		
Co	mments: Detections in diluted analysis were qualified.			
GC/N	IS Instrument Performance Check (IPC) and Internal Standards (IS)	YES	NO	NA
a)	IPC analyzed at the appropriate frequency and met the appropriate standards?	\boxtimes		
b)	Does BFB/DFTPP meet the ion abundance criteria?	\boxtimes		
c)	Internal Standard retention times and areas met appropriate criteria?	\boxtimes		
Co	mments: None			
Calib	prations	YES	NO	NA
a)	Initial calibration analyzed at the appropriate frequency and met the appropriate standards?	\boxtimes		
b)	Continuing calibrations analyzed at the appropriate frequency and met the appropriate standards	?		
		\boxtimes		
c)	Initial calibration verifications and blanks analyzed at the appropriate frequency and met the appr	opriate	stand	ards?
		\boxtimes		
d)	Continuing calibration verifications and blanks analyzed at the appropriate frequency and met the	appro	priate	standards?
C	omments: Analytes of interest met calibration standards.	\boxtimes		
Blan	ıks	YES	NO	NA
a)	Were blanks (trip, equipment, method) performed at required frequency?	\boxtimes		
b)	Were analytes detected in any blanks?	\boxtimes		
	mments: Equipment blank BSA-MW-1S-0215-EB was submitted with SDG KPS140. VOCs were quired based on 5 times rule.	detecte	d. Qua	alification not
Matri	ix Spike/Matrix Spike Duplicate (MS/MSD)	YES	NO	NA
a)	Was MS/MSD accuracy criteria met?	\boxtimes		
b)	Was MS/MSD precision criteria met?	\boxtimes		
Со	mments: None			
Labo	eratory Control Sample (LCS)	YES	NO	NA

a) LCS analyzed at the appropriate frequency and met appropriate standards?

a) Surrogate compounds analyzed at the appropriate frequency and met appropriate standards?

Comments: None

Comments: None

Surrogate (System Monitoring) Compounds

 \boxtimes

YES NO NA

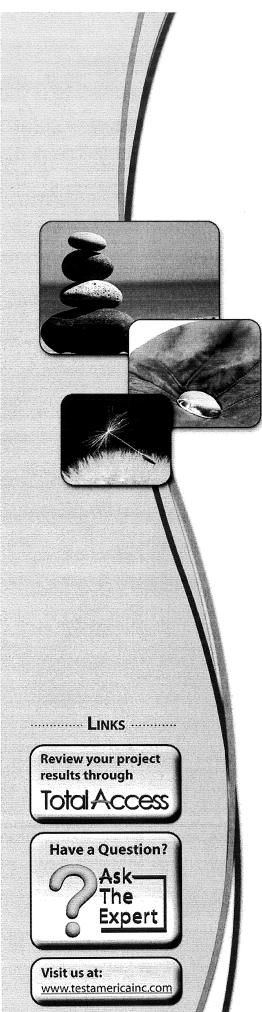
- 100 m		and the latest and th			
Law GFT	4 2 6 6 6	6 10			
	3,000	1/			
	-		A! L O O A E	•	4 40 00 45
and the same		Sec. 1. A	April 2015	3	140-3345
7,00		2 (9)	/\piii 2010	3	170 0070
		VIOLEN CONTRACTOR CONT			

Dupli	cates	YES	NO	NA	
a)	Were field duplicates collected?		\boxtimes		
b)	Was field duplicate precision criteria met?				

Additional Comments: None

Comments: <u>Duplicate samples were not submitted with SDG KPS140.</u>

Qualifications:


Quality Control Issue	Compound(s)	Qualifier	Samples Affected			
Compounds analyzed at a dilution	Benzene, Chlorobenzene, 1,2- Dichlorobenzene, 1,3- Dichlorobenzene, 1,4- Dichlorobenzene, TOC, DOC, Chloride, and Sulfate	D	BSA-MW-1S, BSA-MW-1S-EB and CPA-MW-1D			
Detected at reporting limit	Chlorobenzene	U	BSA-MW-1S-EB			

SDG KPS140

Sample Results from:

BSA-MW-1S CPA-MW-1D

<u>TestAmerica</u>

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc. TestAmerica Savannah 5102 LaRoche Avenue Savannah, GA 31404 Tel: (912)354-7858

TestAmerica Job ID: 680-109732-1

TestAmerica Sample Delivery Group: KPS140

Client Project/Site: 1Q15 LTM GW Sampling - 1403345

For:

Solutia Inc. 575 Maryville Centre Dr. Saint Louis, Missouri 63141

Attn: Mr. Jerry Rinaldi

Michele Kkirsey

Authorized for release by: 2/25/2015 3:06:35 PM

Michele Kersey, Project Manager I (912)354-7858

michele.kersey@testamericainc.com

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Table of Contents

Cover Page	1
Table of Contents	
Definitions	
Case Narrative	
Detection Summary	
Client Sample Results	8
Surrogate Summary	14
QC Sample Results	15
QC Association	22
Chronicle	25
Certification Summary	27
Method Summary	29
Sample Summary	30
	31
Receint Chacklists	22

Definitions/Glossary

Client: Solutia Inc.

Project/Site: 1Q15 LTM GW Sampling - 1403345

TestAmerica Job ID: 680-109732-1

SDG: KPS140

Qualifiers

GC/MS VOA

Qualifier

Qualifier Description

Indicates the analyte was analyzed for but not detected.

GC/MS Semi VOA

Qualifier

Qualifier Description

Indicates the analyte was analyzed for but not detected.

GC VOA

Qualifier

Qualifier Description

Indicates the analyte was analyzed for but not detected.

Metals

Qualifier

Qualifier Description

Indicates the analyte was analyzed for but not detected.

General Chemistry

Qualifier

Qualifier Description

Ū

Indicates the analyte was analyzed for but not detected.

Glossary

Abbreviation

These commonly used abbreviations may or may not be present in this report.

%R

Listed under the "D" column to designate that the result is reported on a dry weight basis Percent Recovery

CFL Contains Free Liquid CNF Contains no Free Liquid

DER

Duplicate error ratio (normalized absolute difference)

Dil Fac

DL, RA, RE, IN

Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC MDA

Decision level concentration Minimum detectable activity **Estimated Detection Limit**

EDL MDC

Minimum detectable concentration

MDL

Method Detection Limit Minimum Level (Dioxin)

ML

NC

Not Calculated

ND

Not detected at the reporting limit (or MDL or EDL if shown)

PQL QC

Practical Quantitation Limit Quality Control

RER

Relative error ratio

RΙ

Reporting Limit or Requested Limit (Radiochemistry) Relative Percent Difference, a measure of the relative difference between two points

RPD TEF

Toxicity Equivalent Factor (Dioxin)

TEQ

Toxicity Equivalent Quotient (Dioxin)

TestAmerica Savannah LAB 4/2/15

Case Narrative

Client: Solutia Inc.

Project/Site: 1Q15 LTM GW Sampling - 1403345

TestAmerica Job ID: 680-109732-1

SDG: KPS140

Job ID: 680-109732-1

Laboratory: TestAmerica Savannah

Narrative

CASE NARRATIVE

Client: Solutia Inc.

Project: 1Q15 LTM GW Sampling - 1403345

Report Number: 680-109732-1

With the exceptions noted as flags or footnotes, standard analytical protocols were followed in the analysis of the samples and no problems were encountered or anomalies observed. In addition all laboratory quality control samples were within established control limits, with any exceptions noted below. Each sample was analyzed to achieve the lowest possible reporting limit within the constraints of the method. In the event of interference or analytes present at high concentrations, samples may be diluted. For diluted samples, the reporting limits are adjusted relative to the dilution required.

RECEIP1

The samples were received on 2/7/2015 9:18 AM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperatures of the 3 coolers at receipt time were 0.7° C, 1.3° C and 1.5° C.

VOLATILE ORGANIC COMPOUNDS (GC-MS)

Samples BSA-MW-1S-2015 (680-109732-1), BSA-MW-1S-0215-EB (680-109732-3), CPA-MW-1D-0215 (680-109732-4) and 1Q15 LTM Trip Blank #5 (680-109732-6) were analyzed for Volatile Organic Compounds (GC-MS) in accordance with EPA SW-846 Method 8260B. The samples were analyzed on 02/18/2015 and 02/19/2015.

Samples BSA-MW-1S-2015 (680-109732-1)[10000X], BSA-MW-1S-0215-EB (680-109732-3)[2X] and CPA-MW-1D-0215 (680-109732-4) [250X] required dilution prior to analysis. The reporting limits have been adjusted accordingly.

Insufficient sample volume was available to perform a matrix spike/matrix spike duplicate/sample duplicate (MS/MSD/DUP) associated with batch 371472.

Insufficient sample volume was available to perform a matrix spike/matrix spike duplicate (MS/MSD) associated with batch 371496.

No analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

SEMIVOLATILE ORGANIC COMPOUNDS (AQUEOUS)

Samples BSA-MW-1S-2015 (680-109732-1), BSA-MW-1S-0215-EB (680-109732-3) and CPA-MW-1D-0215 (680-109732-4) were analyzed for Semivolatile Organic Compounds (Aqueous) in accordance with EPA SW-846 Method 8270D. The samples were prepared on 02/09/2015 and analyzed on 02/13/2015 and 02/14/2015.

No analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

DISSOLVED GASES

Samples BSA-MW-1S-2015 (680-109732-1) and CPA-MW-1D-0215 (680-109732-4) were analyzed for dissolved gases in accordance with RSK-175. The samples were analyzed on 02/19/2015.

Insufficient sample volume was available to perform a matrix spike/matrix spike duplicate (MS/MSD) associated with batch 371305.

No analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

METALS (ICP)

Samples BSA-MW-1S-F(0.2)-0215 (680-109732-2) and CPA-MW-1D-F(0.2)-0215 (680-109732-5) were analyzed for Metals (ICP) in accordance with EPA SW-846 Method 6010C. The samples were prepared on 02/11/2015 and analyzed on 02/13/2015.

4

TestAmerica Savannah

Case Narrative

Client: Solutia Inc.

Project/Site: 1Q15 LTM GW Sampling - 1403345

TestAmerica Job ID: 680-109732-1

SDG: KPS140

Job ID: 680-109732-1 (Continued)

Laboratory: TestAmerica Savannah (Continued)

No analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

METALS (ICP)

Samples BSA-MW-1S-2015 (680-109732-1) and CPA-MW-1D-0215 (680-109732-4) were analyzed for Metals (ICP) in accordance with EPA SW-846 Method 6010C. The samples were prepared on 02/11/2015 and analyzed on 02/13/2015.

No analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

ALKALINITY

Samples BSA-MW-1S-2015 (680-109732-1) and CPA-MW-1D-0215 (680-109732-4) were analyzed for alkalinity in accordance with EPA Method 310.1. The samples were analyzed on 02/09/2015.

No analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

CHLORIDE

Samples BSA-MW-1S-2015 (680-109732-1) and CPA-MW-1D-0215 (680-109732-4) were analyzed for Chloride in accordance with EPA Method 325.2. The samples were analyzed on 02/11/2015.

Samples BSA-MW-1S-2015 (680-109732-1)[5X] and CPA-MW-1D-0215 (680-109732-4)[2X] required dilution prior to analysis. The reporting limits have been adjusted accordingly.

No analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

NITRATE-NITRITE AS NITROGEN

Samples BSA-MW-1S-2015 (680-109732-1) and CPA-MW-1D-0215 (680-109732-4) were analyzed for nitrate-nitrite as nitrogen in accordance with EPA Method 353.2. The samples were analyzed on 02/07/2015.

No analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

SULFATE

Samples BSA-MW-1S-2015 (680-109732-1) and CPA-MW-1D-0215 (680-109732-4) were analyzed for sulfate in accordance with EPA Method 375.4. The samples were analyzed on 02/11/2015.

Sample BSA-MW-1S-2015 (680-109732-1)[5X] required dilution prior to analysis. The reporting limits have been adjusted accordingly.

No analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

TOTAL ORGANIC CARBON

Samples BSA-MW-1S-2015 (680-109732-1) and CPA-MW-1D-0215 (680-109732-4) were analyzed for total organic carbon in accordance with EPA Method 415.1. The samples were analyzed on 02/24/2015.

Sample BSA-MW-1S-2015 (680-109732-1)[5X] required dilution prior to analysis. The reporting limits have been adjusted accordingly.

No analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

DISSOLVED ORGANIC CARBON (DOC)

Samples BSA-MW-1S-F(0.2)-0215 (680-109732-2) and CPA-MW-1D-F(0.2)-0215 (680-109732-5) were analyzed for Dissolved Organic Carbon (DOC) in accordance with EPA Method 415.1. The samples were analyzed on 02/24/2015.

Sample BSA-MW-1S-F(0.2)-0215 (680-109732-2)[5X] required dilution prior to analysis. The reporting limits have been adjusted accordingly.

No analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

45

Ē

Detection Summary

Client: Solutia Inc.

Project/Site: 1Q15 LTM GW Sampling - 1403345

TestAmerica Job ID: 680-109732-1

SDG: KPS140

Client Sample ID: BSA-MW-1S-2015

Client Sample ID: BSA-MW-1S-2015						Lab	S	ample ID:	680-109732-
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Benzene	1000000		10000		ug/L	10000	_	8260B	Total/NA
Methane (TCD)	5300		390		ug/L	1		RSK-175	Total/NA
Iron	12		0.050		mg/L	1		6010C	Total
Manganese	0.99		0.010		mg/L	1		6010C	Recoverable Total
					J	·			Recoverable
Chloride	110		5.0		mg/L	5		325.2	Total/NA
Sulfate	140		25		mg/L	5		375.4	Total/NA
Total Organic Carbon - DL	39		5.0		mg/L	5		415.1	Total/NA
Analyte	Result	Qualifier	RL	RL	Unit	Dil Fac	D	Method	Prep Type
Alkalinity	850		5.0		mg/L	1	_	310.1	Total/NA
Carbon Dioxide, Free	50		5.0		ma/L	1		310 1	Total/NA

Client Sample ID: BSA-MW-1S-F(0.2)-0215

Analyte	Result Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Iron, Dissolved	11	0.050		mg/L	1		6010C	Dissolved
Manganese, Dissolved	0.98	0.010		mg/L	1		6010C	Dissolved
Dissolved Organic Carbon - DL	20	5.0		mg/L	5		415.1	Dissolved

Client Sample ID: BSA-MW-1S-0215-EB

Client Sample ID: BSA-MW-1S-0215-EB					Lab Sample ID: 680-109732-				
Analyte	Result Q	ualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Benzene	130		2.0		ug/L		_	8260B	Total/NA
Chlorobenzene	2.0		2.0		ug/L	2		8260B	Total/NA
1,2-Dichlorobenzene	2.3		2.0		ug/L	2		8260B	Total/NA
1,4-Dichlorobenzene	3.5		2.0		ug/L	2		8260B	Total/NA

Client Sample ID: CPA-MW-1D-0215

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Benzene	5600		250		ug/L	250	-	8260B	Total/NA
Chlorobenzene	19000		250		ug/L	250		8260B	Total/NA
1,2-Dichlorobenzene	12000		250		ug/L	250		8260B	Total/NA
1,3-Dichlorobenzene	1100		250		ug/L	250		8260B	Total/NA
1,4-Dichlorobenzene	11000		250		ug/L	250		8260B	Total/NA
1,2,4-Trichlorobenzene	380		12		ug/L	1		8270D	Total/NA
Ethane	12		1.1		ug/L	· · · · · · · · · · · · · · · · · · ·		RSK-175	Total/NA
Methane (TCD)	10000		390		ug/L	. 1		RSK-175	Total/NA
Iron	0.095		0.050		mg/L	1		6010C	Total
Manganese	0.029		0.010		mg/L	1		6010C	Recoverable Total
Chloride	91		2.0		mg/L	2		325.2	Recoverable Total/NA
Total Organic Carbon	13		1.0		mg/L	1		415.1	Total/NA
Analyte	Result	Qualifier	RL	RL	Unit	Dil Fac		Method	Prep Type
Alkalinity	750		5.0		mg/L		_	310.1	Total/NA

Client Sample ID: CPA-MW-1D-F(0.2)-0215

Lab Sample ID: 680-109732-5

This Detection Summary does not include radiochemical test results.

TestAmerica Savannah

4/2/15

Lab Sample ID: 680-109732-2

Detection Summary

Client: Solutia Inc.

Project/Site: 1Q15 LTM GW Sampling - 1403345

TestAmerica Job ID: 680-109732-1

SDG: KPS140

Client Sample ID: CPA-MW-1D-F(0.2)-0215 (Continued)

Lab Sample ID: 680-109732-5

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac	D Method	Prep Type
Iron, Dissolved	0.071	0.050	mg/L	1	6010C	Dissolved
Manganese, Dissolved	0.029	0.010	mg/L	1	6010C	Dissolved
Dissolved Organic Carbon	11	1.0	mg/L	1	415.1	Dissolved

Client Sample ID: 1Q15 LTM Trip Blank #5 Lab Sample ID: 680-109732-6

No Detections.

This Detection Summary does not include radiochemical test results.

5

Client: Solutia Inc.

Project/Site: 1Q15 LTM GW Sampling - 1403345

TestAmerica Job ID: 680-109732-1

SDG: KPS140

Client Sample ID: BSA-MW-1S-2015

Date Collected: 02/06/15 09:32 Date Received: 02/07/15 09:18 Lab Sample ID: 680-109732-1

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Benzene	1000000	D	10000		ug/L			02/19/15 16:19	1000
Chlorobenzene	10000	U	10000		ug/L			02/19/15 16:19	1000
1,2-Dichlorobenzene	10000	U	10000		ug/L			02/19/15 16:19	10000
1,3-Dichlorobenzene	10000	U	10000		ug/L			02/19/15 16:19	10000
1,4-Dichlorobenzene	10000	U	10000		ug/L			02/19/15 16:19	10000
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
Toluene-d8 (Surr)	108		70 - 130					02/19/15 16:19	10000
1,2-Dichloroethane-d4 (Surr)	101		70 - 130					02/19/15 16:19	10000
Dibromofluoromethane (Surr)	110		70 - 130					02/19/15 16:19	10000
4-Bromofluorobenzene (Surr)	85		70 - 130					02/19/15 16:19	1000
Method: 8270D - Semivolatile O	rganic Compou	nds (GC/MS	5)						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2-Chlorophenol	11	-	11		ug/L		02/09/15 16:25	02/13/15 23:55	1
1,2,4-Trichlorobenzene	11	U	11		ug/L		02/09/15 16:25	02/13/15 23:55	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	65		32 - 114				02/09/15 16:25	02/13/15 23:55	1
2-Fluorophenol	47		26 - 107				02/09/15 16:25	02/13/15 23:55	1
Nitrobenzene-d5	59		30 - 117				02/09/15 16:25	02/13/15 23:55	1
Phenol-d5	48		25 _ 109				02/09/15 16:25	02/13/15 23:55	1
Terphenyl-d14	69		10 - 132				02/09/15 16:25	02/13/15 23:55	1
2,4,6-Tribromophenol	78		34 - 140				02/09/15 16:25	02/13/15 23:55	1
Method: RSK-175 - Dissolved G		0 115							
Analyte Ethane	Result 1.1	Qualifier U	RL	MDL		D	Prepared	Analyzed	Dil Fac
Ethylene			1.1		ug/L			02/19/15 15:57	1
•		U	1.0		ug/L			02/19/15 15:57	1
Methane (TCD)	5300		390		ug/L			02/19/15 15:57	1
Method: 6010C - Metals (ICP) - ⁻ Analyte		le Qualifier	DI.	MDI	11-4	_			
Iron	12		RL 	MDL		D	Prepared	Analyzed	Dil Fac
Manganese	0.99		0.050		mg/L mg/L		02/11/15 13:40 02/11/15 13:40	02/13/15 02:18 02/13/15 02:18	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Drawarad	A I	B.1 E.
Chloride	110		5.0	IVIDE	/I		Prepared	Analyzed	Dil Fac
Nitrate as N	0.050		0.050		mg/L mg/L			02/11/15 13:28	5
Sulfate	140		25		mg/L			02/07/15 13:41 02/11/15 12:59	1
Analyte		Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Alkalinity	850		5.0		mg/L			02/09/15 17:16	1
Carbon Dioxide, Free	50		5.0		mg/L			02/09/15 17:16	1
General Chemistry - DL									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Organic Carbon		D	5.0		mg/L			02/24/15 16:45	ac

TestAmerica Savannah

Client: Solutia Inc.

Project/Site: 1Q15 LTM GW Sampling - 1403345

TestAmerica Job ID: 680-109732-1

SDG: KPS140

Client Sample ID: BSA-MW-1S-F(0.2)-0215

Date Collected: 02/06/15 09:32 Date Received: 02/07/15 09:18 Lab Sample ID: 680-109732-2

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Iron, Dissolved	11		0.050		mg/L		02/11/15 13:40	02/13/15 02:23	1
Manganese, Dissolved	0.98		0.010		mg/L		02/11/15 13:40	02/13/15 02:23	1
General Chemistry - Dissolved - DL									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Dissolved Organic Carbon	20	D	5.0		mg/L			02/24/15 21:03	5

TestAmerica Savannah

Client: Solutia Inc.

Project/Site: 1Q15 LTM GW Sampling - 1403345

TestAmerica Job ID: 680-109732-1

SDG: KPS140

Client Sample ID: BSA-MW-1S-0215-EB

Date Collected: 02/06/15 09:55 Date Received: 02/07/15 09:18 Lab Sample ID: 680-109732-3

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	130	D	2.0		ug/L			02/19/15 03:13	2
Chlorobenzene	2.0	U	2.0		ug/L			02/19/15 03:13	2
1,2-Dichlorobenzene	2.3	17	2.0		ug/L			02/19/15 03:13	2
1,3-Dichlorobenzene	2.0	U	2.0		ug/L			02/19/15 03:13	2
1,4-Dichlorobenzene	3.5	D	2.0		ug/L			02/19/15 03:13	2
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	111		70 - 130					02/19/15 03:13	2
1,2-Dichloroethane-d4 (Surr)	118		70 - 130					02/19/15 03:13	2
Dibromofluoromethane (Surr)	121		70 - 130					02/19/15 03:13	2
4-Bromofluorobenzene (Surr)	103		70 - 130					02/19/15 03:13	2
			70 - 700					02/19/15 03.13	2
Method: 8270D - Semivolatile	Organic Compou	nds (GC/MS						02/19/15 03.13	2
·		nds (GC/MS		MDL	Unit	D	Prepared	Analyzed	Dil Fac
Method: 8270D - Semivolatile		Qualifier	S)	MDL	Unit ug/L	D	Prepared 02/09/15 16:25		
Method: 8270D - Semivolatile Analyte	Result	Qualifier U	S) RL	MDL		<u>D</u>		Analyzed	Dil Fac
Method: 8270D - Semivolatile Analyte 2-Chlorophenol	Result	Qualifier U U	S)	MDL	ug/L	<u>D</u>	02/09/15 16:25	Analyzed 02/14/15 00:21 02/14/15 00:21	Dil Fac
Method: 8270D - Semivolatile Analyte 2-Chlorophenol 1,2,4-Trichlorobenzene	11 11	Qualifier U U	RL11	MDL	ug/L	<u>D</u>	02/09/15 16:25 02/09/15 16:25	Analyzed 02/14/15 00:21	Dil Fac
Method: 8270D - Semivolatile Analyte 2-Chlorophenol 1,2,4-Trichlorobenzene Surrogate	Result 11 11 %Recovery	Qualifier U U	RL11111111	MDL	ug/L	<u>D</u>	02/09/15 16:25 02/09/15 16:25 Prepared	Analyzed 02/14/15 00:21 02/14/15 00:21 Analyzed 02/14/15 00:21	Dil Fac 1 Dil Fac
Method: 8270D - Semivolatile Analyte 2-Chlorophenol 1,2,4-Trichlorobenzene Surrogate 2-Fluorobiphenyl	Result	Qualifier U U	RL 11 11 11 Limits 32 - 114	MDL	ug/L	D	02/09/15 16:25 02/09/15 16:25 Prepared 02/09/15 16:25	Analyzed 02/14/15 00:21 02/14/15 00:21 Analyzed	Dil Fac 1 1 Dil Fac
Method: 8270D - Semivolatile Analyte 2-Chlorophenol 1,2,4-Trichlorobenzene Surrogate 2-Fluorobiphenyl 2-Fluorophenol	Result	Qualifier U U	RL 11 11 11	MDL	ug/L	D	02/09/15 16:25 02/09/15 16:25 Prepared 02/09/15 16:25 02/09/15 16:25	Analyzed 02/14/15 00:21 02/14/15 00:21 Analyzed 02/14/15 00:21 02/14/15 00:21	Dil Fac 1 Dil Fac
Method: 8270D - Semivolatile Analyte 2-Chlorophenol 1,2,4-Trichlorobenzene Surrogate 2-Fluorobiphenyl 2-Fluorophenol Nitrobenzene-d5	Result	Qualifier U U	RL 11 11 11 11 11 11 11 11 11 11 11 11 11	MDL	ug/L	<u>D</u>	02/09/15 16:25 02/09/15 16:25 Prepared 02/09/15 16:25 02/09/15 16:25 02/09/15 16:25	Analyzed 02/14/15 00:21 02/14/15 00:21 Analyzed 02/14/15 00:21 02/14/15 00:21 02/14/15 00:21	Dil Fac 1 1 Dil Fac

Client: Solutia Inc.

Project/Site: 1Q15 LTM GW Sampling - 1403345

TestAmerica Job ID: 680-109732-1

SDG: KPS140

Client Sample ID: CPA-MW-1D-0215

Date Collected: 02/06/15 08:46 Date Received: 02/07/15 09:18 Lab Sample ID: 680-109732-4

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Benzene	5600	D	250		ug/L			02/19/15 03:34	25
Chlorobenzene	19000	P	250		ug/L			02/19/15 03:34	25
1,2-Dichlorobenzene	12000	0	250		ug/L			02/19/15 03:34	25
1,3-Dichlorobenzene	1100	D	250		ug/L			02/19/15 03:34	25
1,4-Dichlorobenzene	11000	D	250		ug/L			02/19/15 03:34	25
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
Toluene-d8 (Surr)	111		70 - 130					02/19/15 03:34	25
1,2-Dichloroethane-d4 (Surr)	111		70 - 130					02/19/15 03:34	25
Dibromofluoromethane (Surr)	117		70 - 130					02/19/15 03:34	25
4-Bromofluorobenzene (Surr)	99		70 _ 130					02/19/15 03:34	25
Method: 8270D - Semivolatile Organ	ic Compou	nds (GC/MS	S)						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
2-Chlorophenol	12	U	12		ug/L		02/09/15 16:25	02/14/15 00:46	
1,2,4-Trichlorobenzene	380		12		ug/L		02/09/15 16:25	02/14/15 00:46	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
2-Fluorobiphenyl	60		32 - 114				02/09/15 16:25	02/14/15 00:46	
2-Fluorophenol	55		26 - 107				02/09/15 16:25	02/14/15 00:46	
Nitrobenzene-d5	63		30 - 117				02/09/15 16:25	02/14/15 00:46	
Phenol-d5	64		25 _ 109				02/09/15 16:25	02/14/15 00:46	
Terphenyl-d14	62		10 - 132				02/09/15 16:25	02/14/15 00:46	
2,4,6-Tribromophenol	72		34 - 140				02/09/15 16:25	02/14/15 00:46	
Method: RSK-175 - Dissolved Gases	(GC)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Ethane	12		1.1		ug/L			02/19/15 15:42	
Ethylene	1.0	U	1.0		ug/L			02/19/15 15:42	
Wethane (TCD)	10000		390		ug/L			02/19/15 15:42	
Method: 6010C - Metals (ICP) - Total	Recoverat	ole							
Analyte	Result	Qualifier	RL .	MDL	Unit	D	Prepared	Analyzed	Dil Fa
ron	0.095		0.050		mg/L		02/11/15 13:40	02/13/15 02:27	
Manganese	0.029		0.010		mg/L		02/11/15 13:40	02/13/15 02:27	
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Chloride	91	D	2.0		mg/L			02/11/15 13:13	
Nitrate as N	0.050	U	0.050		mg/L			02/07/15 13:42	
Sulfate	5.0	U	5.0		mg/L			02/11/15 12:07	
Fotal Organic Carbon	13		1.0		mg/L			02/24/15 15:56	
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fa
Alkalinity	750		5.0		mg/L			02/09/15 17:26	
Carbon Dioxide, Free	5.0		5.0						

Client: Solutia Inc.

Project/Site: 1Q15 LTM GW Sampling - 1403345

TestAmerica Job ID: 680-109732-1

SDG: KPS140

Client Sample ID: CPA-MW-1D-F(0.2)-0215

Date Collected: 02/06/15 08:46 Date Received: 02/07/15 09:18 Lab Sample ID: 680-109732-5

Matrix: Water

Method: 6010C - Metals (ICP) - Diss	olved								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Iron, Dissolved	0.071		0.050		mg/L		02/11/15 13:40	02/13/15 02:32	1
Manganese, Dissolved	0.029		0.010		mg/L		02/11/15 13:40	02/13/15 02:32	1
General Chemistry - Dissolved									
Analyte	Result	Qualifier	RL	MDL	Unit	. D	Prepared	Analyzed	Dil Fac
Dissolved Organic Carbon	11		1.0		mg/L			02/24/15 21:19	1

TestAmerica Savannah

Client: Solutia Inc.

Project/Site: 1Q15 LTM GW Sampling - 1403345

TestAmerica Job ID: 680-109732-1

SDG: KPS140

Client Sample ID: 1Q15 LTM Trip Blank #5

Date Collected: 02/06/15 00:00 Date Received: 02/07/15 09:18

1,2-Dichloroethane-d4 (Surr)

Dibromofluoromethane (Surr)

4-Bromofluorobenzene (Surr)

Lab Sample ID: 680-109732-6

02/18/15 21:41

02/18/15 21:41

02/18/15 21:41

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	1.0	U	1.0		ug/L			02/18/15 21:41	1
Chlorobenzene	1.0	U	1.0		ug/L			02/18/15 21:41	1
1,2-Dichlorobenzene	1.0	U	1.0		ug/L			02/18/15 21:41	1
1,3-Dichlorobenzene	1.0	U	1.0		ug/L			02/18/15 21:41	1
1,4-Dichlorobenzene	1.0	U	1.0		ug/L			02/18/15 21:41	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	112		70 - 130			-	-	02/18/15 21:41	1

70 - 130

70 - 130

70 - 130

101

111

104

TestAmerica Savannah

Surrogate Summary

Client: Solutia Inc.

Project/Site: 1Q15 LTM GW Sampling - 1403345

TestAmerica Job ID: 680-109732-1

SDG: KPS140

Method: 8260B - Volatile Organic Compounds (GC/MS)

Matrix: Water Prep Type: Total/NA

				Percent Sui	rrogate Recov	ery (Acceptance Limits)
		TOL	12DCE	DBFM	BFB	
Lab Sample ID	Client Sample ID	(70-130)	(70-130)	(70-130)	(70-130)	
880-109732-1	BSA-MW-1S-2015	108	101	110	85	
380-109732-3	BSA-MW-1S-0215-EB	111	118	121	103	
880-109732-4	CPA-MW-1D-0215	111	111	117	99	
880-109732-6	1Q15 LTM Trip Blank #5	112	101	111	104	
_CS 680-371472/4	Lab Control Sample	117	104	111	100	
CS 680-371496/3	Lab Control Sample	104	89	104	80	
CSD 680-371472/5	Lab Control Sample Dup	115	103	109	99	
CSD 680-371496/4	Lab Control Sample Dup	107	90	105	78	
MB 680-371472/8	Method Blank	112	99	109	105	
MB 680-371496/7	Method Blank	106	92	105	83	

TOL = Toluene-d8 (Surr)

12DCE = 1,2-Dichloroethane-d4 (Surr)

DBFM = Dibromofluoromethane (Surr)

BFB = 4-Bromofluorobenzene (Surr)

Method: 8270D - Semivolatile Organic Compounds (GC/MS)

Matrix: Water

Prep Type: Total/NA

		Percent Surrogate Recovery (Acceptance Limits)								
		FBP	2FP	NBZ	PHL	TPH	TBP			
Lab Sample ID	Client Sample ID	(32-114)	(26-107)	(30-117)	(25-109)	(10-132)	(34-140)			
680-109732-1	BSA-MW-1S-2015	65	47	59	48	69	78			
680-109732-3	BSA-MW-1S-0215-EB	65	49	67	55	86	60			
680-109732-4	CPA-MW-1D-0215	60	55	63	64	62	72			
LCS 680-370098/13-A	Lab Control Sample	67	43	62	50	87	76			
MB 680-370098/12-A	Method Blank	70	42	57	43	101	68			

Surrogate Legend

FBP = 2-Fluorobiphenyl

2FP = 2-Fluorophenol

NBZ = Nitrobenzene-d5

PHL = Phenol-d5

TPH = Terphenyl-d14

TBP = 2,4,6-Tribromophenol

TestAmerica Savannah

Client: Solutia Inc.

Project/Site: 1Q15 LTM GW Sampling - 1403345

TestAmerica Job ID: 680-109732-1

SDG: KPS140

Method: 8260B - Volatile Organic Compounds (GC/MS)

Lab Sample ID: MB 680-371472/8

Matrix: Water

Analysis Batch: 371472

Client Sample ID: Method Blank Prep Type: Total/NA

мв мв Analyte Result Qualifier RL MDL Unit Prepared Dil Fac Analyzed Benzene 1.0 U 1.0 02/18/15 19:55 ug/L Chlorobenzene 1.0 U 1.0 ug/L 02/18/15 19:55 1,2-Dichlorobenzene 1.0 U 1.0 ug/L 02/18/15 19:55 1,3-Dichlorobenzene 1.0 U 1.0 ug/L 02/18/15 19:55 1,4-Dichlorobenzene 1.0 U 1.0 ug/L 02/18/15 19:55

	MB MB	3			
Surrogate	%Recovery Qu	ıalifier Limits	Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	112	70 - 130		02/18/15 19:55	1
1,2-Dichloroethane-d4 (Surr)	99	70 - 130		02/18/15 19:55	1
Dibromofluoromethane (Surr)	109	70 - 130		02/18/15 19:55	1
4-Bromofluorobenzene (Surr)	105	70 - 130		02/18/15 19:55	1

Lab Sample ID: LCS 680-371472/4

Matrix: Water

Analysis Batch: 371472

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Spike LCS LCS %Rec. Analyte Added Result Qualifier Unit %Rec Limits Benzene 50.0 52.8 ug/L 106 73 - 131 Chlorobenzene 50.0 80 - 120 52.5 ug/L 105 1,2-Dichlorobenzene 50.0 53.5 ug/L 107 80 - 120 1,3-Dichlorobenzene 50.0 52.6 ug/L 80 - 120 105 1.4-Dichlorobenzene 50.0 51.7 ug/L 103 80 - 120

LCS LCS Surrogate %Recovery Qualifier Limits Toluene-d8 (Surr) 117 70 - 130 1,2-Dichloroethane-d4 (Surr) 104 70 - 130 Dibromofluoromethane (Surr) 111 70 - 130 4-Bromofluorobenzene (Surr) 100 70 - 130

Lab Sample ID: LCSD 680-371472/5

Matrix: Water

Analysis Batch: 371472

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	50.0	51.9		ug/L		104	73 - 131	2	30
Chlorobenzene	50.0	52.5		ug/L		105	80 - 120	0	20
1,2-Dichlorobenzene	50.0	53.2		ug/L		106	80 - 120	1	20
1,3-Dichlorobenzene	50.0	52.9		ug/L		106	80 - 120	1	20
1,4-Dichlorobenzene	50.0	51.2		ug/L		102	80 - 120	1	20

	LCSD	LCSD	
Surrogate	%Recovery	Qualifier	Limits
Toluene-d8 (Surr)	115		70 - 130
1,2-Dichloroethane-d4 (Surr)	103		70 - 130
Dibromofluoromethane (Surr)	109		70 - 130
4-Bromofluorobenzene (Surr)	99		70 - 130

TestAmerica Savannah

LAB/4/2/15

Client: Solutia Inc.

Project/Site: 1Q15 LTM GW Sampling - 1403345

TestAmerica Job ID: 680-109732-1

SDG: KPS140

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 680-371496/7

Matrix: Water

Analysis Batch: 371496

Client Sample ID: Method Blank

Prep Type: Total/NA

		MB	MR							
	Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
	Benzene	1.0	U	1.0		ug/L			02/19/15 10:58	1
	Chlorobenzene	1.0	U	1.0		ug/L			02/19/15 10:58	1
-	1,2-Dichlorobenzene	1.0	U	1.0		ug/L			02/19/15 10:58	1
	1,3-Dichlorobenzene	1.0	U	1.0		ug/L			02/19/15 10:58	1
	1,4-Dichlorobenzene	1.0	U	1.0		ug/L			02/19/15 10:58	1
i										

Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac Toluene-d8 (Surr) 70 - 130 106 02/19/15 10:58 1,2-Dichloroethane-d4 (Surr) 92 70 - 130 02/19/15 10:58 Dibromofluoromethane (Surr) 105 70 - 130 02/19/15 10:58 4-Bromofluorobenzene (Surr) 83 70 - 130 02/19/15 10:58

Lab Sample ID: LCS 680-371496/3

Matrix: Water

Analysis Batch: 371496

Client Sample ID: Lab Control Sample Prep Type: Total/NA

	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Benzene	50.0	48.2		ug/L		96	73 - 131
Chlorobenzene	50.0	54.5		ug/L		109	80 - 120
1,2-Dichlorobenzene	50.0	49.7		ug/L		99	80 - 120
1,3-Dichlorobenzene	50.0	49.1		ug/L		98	80 - 120
1,4-Dichlorobenzene	50.0	49.6		ug/L		99	80 - 120

LCS LCS Surrogate %Recovery Qualifier Limits Toluene-d8 (Surr) 104 70 - 130 1,2-Dichloroethane-d4 (Surr) 89 70 - 130 Dibromofluoromethane (Surr) 104 70 - 130 4-Bromofluorobenzene (Surr) 80 70 - 130

Lab Sample ID: LCSD 680-371496/4

Matrix: Water

Analysis Batch: 371496

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	50.0	48.8		ug/L		98	73 - 131	1	30
Chlorobenzene	50.0	55.1		ug/L		110	80 - 120	1	20
1,2-Dichlorobenzene	50.0	49.7		ug/L		99	80 - 120	0	20
1,3-Dichlorobenzene	50.0	49.4		ug/L		99	80 - 120	0	20
1,4-Dichlorobenzene	50.0	50.1		ug/L		100	80 - 120	1	20

	LCSD	LCSD	
Surrogate	%Recovery	Qualifier	Limits
Toluene-d8 (Surr)	107		70 - 130
1,2-Dichloroethane-d4 (Surr)	90		70 - 130
Dibromofluoromethane (Surr)	105		70 - 130
4-Bromofluorobenzene (Surr)	78		70 - 130

TestAmerica Savannah

Client: Solutia Inc.

Project/Site: 1Q15 LTM GW Sampling - 1403345

TestAmerica Job ID: 680-109732-1

SDG: KPS140

Method: 8270D - Semivolatile Organic Compounds (GC/MS)

Lab Sample ID: MB 680-370098/12-A

Matrix: Water

Analysis Batch: 371019

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 370098

į		IVID	IVID							
	Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
	2-Chlorophenol	10	U	10		ug/L		02/09/15 16:25	02/14/15 22:34	1
	1,2,4-Trichlorobenzene	10	U	10		ug/L		02/09/15 16:25	02/14/15 22:34	1
l										

MB MB

MR MR

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	70	32 - 114	02/09/15 16:25	02/14/15 22:34	
2-Fluorophenol	42	26 - 107	02/09/15 16:25	02/14/15 22:34	1
Nitrobenzene-d5	57	30 - 117	02/09/15 16:25	02/14/15 22:34	1
Phenol-d5	43	25 - 109	02/09/15 16:25	02/14/15 22:34	1
Terphenyl-d14	101	10 - 132	02/09/15 16:25	02/14/15 22:34	1
2,4,6-Tribromophenol	68	34 - 140	02/09/15 16:25	02/14/15 22:34	1

Lab Sample ID: LCS 680-370098/13-A

Matrix: Water

Analysis Batch: 370908

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 370098

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
4-Chloroaniline	100	62.0		ug/L		62	10 - 112	
2-Chlorophenol	100	52.1		ug/L		52	38 - 98	
1,4-Dioxane	100	37.2		ug/L		37	16 _ 79	
1,2,4-Trichlorobenzene	100	44.6		ug/L		45	16 - 80	

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
2-Fluorobiphenyl	67		32 - 114
2-Fluorophenol	43		26 - 107
Nitrobenzene-d5	62		30 - 117
Phenol-d5	50		25 - 109
Terphenyl-d14	87		10 - 132
2,4,6-Tribromophenol	76		34 - 140

Method: RSK-175 - Dissolved Gases (GC)

Lab Sample ID: MB 680-371305/7

Matrix: Water

Analysis Batch: 371305

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

	INID	IVID							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ethane	1.1	U	1.1		ug/L			02/19/15 12:37	1
Ethylene	1.0	U	1.0		ug/L			02/19/15 12:37	1
Methane	0.58	U	0.58		ug/L			02/19/15 12:37	1
Methane (TCD)	390	U	390		ug/L			02/19/15 12:37	1

Lab Sample ID: LCS 680-371305/2

Matrix: Water

Analysis Batch: 371305								
	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Methane (TCD)	1920	1540		ug/L		80	75 - 125	

TestAmerica Savannah

Prep Type: Total/NA

Client: Solutia Inc.

Project/Site: 1Q15 LTM GW Sampling - 1403345

TestAmerica Job ID: 680-109732-1

SDG: KPS140

Method: RSK-175 - Dissolved Gases (GC) (Continued)

Lab Sample ID: LCS 680-371305/5

Matrix: Water

Analysis Batch: 371305

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Ethane	288	239		ug/L		83	75 - 125
Ethylene	269	220		ug/L		82	75 - 125
Methane	154	119		ug/L		78	75 - 125

Lab Sample ID: LCSD 680-371305/25

Matrix: Water

Analysis Batch: 371305

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

-	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Methane (TCD)	1920	1700		ug/L	_	89	75 - 125	10	30

Lab Sample ID: LCSD 680-371305/6

Matrix: Water

Analysis Batch: 371305

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Ethane	288	305		ug/L		106	75 - 125	24	30
Ethylene	269	286		ug/L		106	75 - 125	26	30
Methane	154	162		ug/L		105	75 _ 125	30	30

Method: 6010C - Metals (ICP)

Lab Sample ID: MB 680-370514/1-A

Matrix: Water

Analysis Batch: 370847

Client Sample ID: Method Blank Prep Type: Total Recoverable

Prep Batch: 370514

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Iron	0.050	U	0.050		mg/L		02/11/15 13:40	02/13/15 01:14	1
Iron, Dissolved	0.050	U	0.050		mg/L		02/11/15 13:40	02/13/15 01:14	1
Manganese	0.010	U	0.010		mg/L		02/11/15 13:40	02/13/15 01:14	1
Manganese, Dissolved	0.010	U	0.010		mg/L		02/11/15 13:40	02/13/15 01:14	1

Lab Sample ID: LCS 680-370514/2-A

Matrix: Water

Analysis Batch: 370847

Client Sample ID: Lab Control Sample Prep Type: Total Recoverable

Prep Batch: 370514

1								i i cp wat	,CII. 0100
l		Spike	LCS	LCS				%Rec.	
l	Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
	Iron	5.00	5.06		mg/L		101	80 - 120	
	Iron, Dissolved	5.00	5.06		mg/L		101	80 - 120	
l	Manganese	0.500	0.525		mg/L		105	80 - 120	
L	Manganese, Dissolved	0.500	0.525		mg/L		105	80 - 120	

TestAmerica Savannah

Client: Solutia Inc.

Project/Site: 1Q15 LTM GW Sampling - 1403345

TestAmerica Job ID: 680-109732-1

SDG: KPS140

Method: 310.1 - Alkalinity

Lab Sample ID: MB 680-370292/5

Matrix: Water

Analysis Batch: 370292

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Total/NA

Analyte Result Qualifier RL RL Unit Prepared Analyzed Dil Fac Alkalinity 5.0 U 5.0 mg/L 02/09/15 16:57 Carbon Dioxide, Free 5.0 U 5.0 mg/L 02/09/15 16:57

MB MB

Lab Sample ID: LCS 680-370292/6

Matrix: Water

Analysis Batch: 370292

, ,									
		Spike	LCS	LCS				%Rec.	
Analyte		Added	Result	Qualifier	Unit	D	%Rec	Limits	
Alkalinity		250	215		mg/L	_	86	80 - 120	

Lab Sample ID: LCSD 680-370292/15

Matrix: Water

Analysis Batch: 370292

Attalysis Daton. 070232								
Spik	LCSD	LCSD				%Rec.		RPD
Analyte Adde	l Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Alkalinity 25	246		mg/L	_	98	80 - 120	13	30

Method: 325.2 - Chloride

Lab Sample ID: MB 680-370558/5

Matrix: Water

Analysis Batch: 370558

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	1.0	U	1.0		mg/L	_		02/11/15 11:53	1

Lab Sample ID: LCS 680-370558/15

Matrix: Water

Analysis Batch: 370558

		Spike	LCS	LCS				%Rec.	
	Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
i.	Chloride	25.0	25.9		mg/L		104	85 _ 115	

Method: 353.2 - Nitrogen, Nitrate-Nitrite

Lab Sample ID: MB 680-370023/13	Client Commission Mathematical
Matrix: Water	Client Sample ID: Method Blank
	Prep Type: Total/NA
Analysis Batch: 370023	

MB MB Analyte Result Qualifier RL MDL Unit Prepared Analyzed Dil Fac Nitrate as N 0.050 U 0.050 mg/L 02/07/15 13:32

Lab Sample ID: LCS 680-370023/16

Matrix: Water

Analysis Batch: 370023

Allalysis Datell. 370023								
	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Nitrate as N	0.500	0.527		mg/L	-	105	75 - 125	
Nitrate Nitrite as N	1.00	1.02		mg/L		102	90 - 110	

TestAmerica Savannah

Prep Type: Total/NA

LAB 4/2/15

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Prep Type: Total/NA

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample

TestAmerica Job ID: 680-109732-1

SDG: KPS140

Method: 3	353.2 -	Nitrogen,	Nitrate-Nitrite	(Continued)					

Lab Sample ID: LCS 680-370023/16

Matrix: Water

Analysis Batch: 370023

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Spike LCS LCS %Rec.

Analyte Added Result Qualifier Unit Limits %Rec Nitrite as N 0.500 0.498 mg/L 100 90 - 110

Method: 375.4 - Sulfate

Lab Sample ID: MB 680-370565/17

Matrix: Water

Analysis Batch: 370565

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Type: Total/NA

мв мв

Analyte Result Qualifier RL. MDL Unit Prepared Analyzed Dil Fac Sulfate 5.0 U 5.0 mg/L 02/11/15 13:33

Lab Sample ID: LCS 680-370565/11

Matrix: Water

Analysis Batch: 370565

Spike LCS LCS %Rec. Analyte Added Result Qualifier Unit D %Rec Limits Sulfate 20.0 19.8 mg/L 99 75 _ 125

Method: 415.1 - DOC

Lab Sample ID: MB 160-175823/73

Matrix: Water

Analysis Batch: 175823

Client Sample ID: Method Blank Prep Type: Dissolved

MB MB

Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac Dissolved Organic Carbon 1.0 Ū 1.0 mg/L 02/24/15 20:45

Matrix: Water

Analysis Batch: 175823

Lab Sample ID: LCS 160-175823/74 Client Sample ID: Lab Control Sample Prep Type: Dissolved

Spike LCS LCS %Rec.

Analyte Added Result Qualifier Unit D %Rec Limits Dissolved Organic Carbon 10.0 10.3 mg/L 103 90 - 110

Method: 415.1 - DOC - DL

Lab Sample ID: 680-109732-2 MS Client Sample ID: BSA-MW-1S-F(0.2)-0215

Matrix: Water Prep Type: Dissolved Analysis Batch: 175823

MS MS

Spike %Rec. Analyte Result Qualifier Added Result Qualifier Unit D %Rec Limits Dissolved Organic Carbon - DL 20 25.0 45.4 82 - 132 mg/L 102

Lab Sample ID: 680-109732-2 DU

Matrix: Water

Analysis Batch: 175823

Sample Sample DU DU RPD Result Qualifier Result Qualifier Unit RPD Limit Dissolved Organic Carbon - DL 20 19.9 mg/L 0.5 20

Sample Sample

TestAmerica Savannah

Prep Type: Dissolved

Client Sample ID: BSA-MW-1S-F(0.2)-0215

Client: Solutia Inc.

Project/Site: 1Q15 LTM GW Sampling - 1403345

TestAmerica Job ID: 680-109732-1

SDG: KPS140

Method: 415.1 - TOC

Lab Sample ID: MB 160-175822/32

Matrix: Water

Analysis Batch: 175822

Client Sample ID: Method Blank Prep Type: Total/NA

Top Typo: Totalities

AnalyteResult
Total Organic CarbonResult
1.0QualifierRL
1.0MDL
1.0Unit
mg/LD
D
10Prepared
10Analyzed
02/24/15 15:26Dil Fac
02/24/15 15:26

Lab Sample ID: LCS 160-175822/33

Matrix: Water

Analysis Batch: 175822

Client Sample ID: Lab Control Sample

Client Sample ID: BSA-MW-1S-2015

Prep Type: Total/NA

Prep Type: Total/NA

 Analyte
 Added Organic Carbon
 Result 10.0
 Qualifier Post of the control of the cont

MB MB

Method: 415.1 - TOC - DL

Lab Sample ID: 680-109732-1 MS

Matrix: Water

Analysis Batch: 175822

-109732-1 MS Client Sample ID: BSA-MW-1S-2015
Prep Type: Total/NA

Sample Sample Spike MS MS %Rec. Analyte Result Qualifier Added Result Qualifier Unit D %Rec Limits Total Organic Carbon - DL 39 25.0 62.1 mg/L 76 - 120

Lab Sample ID: 680-109732-1 DU

Matrix: Water

Analysis Batch: 175822

 Sample
 DU
 DU
 RPD

 Analyte
 Result
 Qualifier
 Result
 Qualifier
 Unit
 D
 RPD
 Limit

 Total Organic Carbon - DL
 39
 38.3
 38.3
 mg/L
 2
 20

TestAmerica Savannah

QC Association Summary

Client: Solutia Inc.

Project/Site: 1Q15 LTM GW Sampling - 1403345

TestAmerica Job ID: 680-109732-1

SDG: KPS140

GC/MS VOA

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-109732-3	BSA-MW-1S-0215-EB	Total/NA	Water	8260B	
680-109732-4	CPA-MW-1D-0215	Total/NA	Water	8260B	
680-109732-6	1Q15 LTM Trip Blank #5	Total/NA	Water	8260B	
LCS 680-371472/4	Lab Control Sample	Total/NA	Water	8260B	
LCSD 680-371472/5	Lab Control Sample Dup	Total/NA	Water	8260B	
MB 680-371472/8	Method Blank	Total/NA	Water	8260B	
- Analysis Batala 27140		1000/14/	vvater	0200B	

Analysis Batch: 371496

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-109732-1	BSA-MW-1S-2015	Total/NA	Water	8260B	1100 Daton
LCS 680-371496/3	Lab Control Sample	Total/NA	Water	8260B	
LCSD 680-371496/4	Lab Control Sample Dup	Total/NA	Water	8260B	
MB 680-371496/7	Method Blank	Total/NA	Water	8260B	

GC/MS Semi VOA

Prep Batch: 370098

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-109732-1	BSA-MW-1S-2015	Total/NA	Water	3520C	
680-109732-3	BSA-MW-1S-0215-EB	Total/NA	Water	3520C	
680-109732-4	CPA-MW-1D-0215	Total/NA	Water	3520C	
LCS 680-370098/13-A	Lab Control Sample	Total/NA	Water	3520C	
MB 680-370098/12-A	Method Blank	Total/NA	Water	3520C	

Analysis Batch: 370908

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-109732-1	BSA-MW-1S-2015	Total/NA	Water	8270D	370098
680-109732-3	BSA-MW-1S-0215-EB	Total/NA	Water	8270D	370098
680-109732-4	CPA-MW-1D-0215	Total/NA	Water	8270D	370098
LCS 680-370098/13-A	Lab Control Sample	Total/NA	Water	8270D	370098

Analysis Batch: 371019

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
MB 680-370098/12-A	Method Blank	Total/NA	Water	8270D	370098

GC VOA

Analysis Batch: 371305

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-109732-1	BSA-MW-1S-2015	Total/NA	Water	RSK-175	
680-109732-4	CPA-MW-1D-0215	Total/NA	Water	RSK-175	
LCS 680-371305/2	Lab Control Sample	Total/NA	Water	RSK-175	
LCS 680-371305/5	Lab Control Sample	Total/NA	Water	RSK-175	
LCSD 680-371305/25	Lab Control Sample Dup	Total/NA	Water	RSK-175	
LCSD 680-371305/6	Lab Control Sample Dup	Total/NA	Water	RSK-175	
MB 680-371305/7	Method Blank	Total/NA	Water	RSK-175	

TestAmerica Savannah

QC Association Summary

Client: Solutia Inc.

Project/Site: 1Q15 LTM GW Sampling - 1403345

TestAmerica Job ID: 680-109732-1

SDG: KPS140

Metals

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-109732-1	BSA-MW-1S-2015	Total Recoverable	Water	3005A	
680-109732-2	BSA-MW-1S-F(0.2)-0215	Dissolved	Water	3005A	
680-109732-4	CPA-MW-1D-0215	Total Recoverable	Water	3005A	
680-109732-5	CPA-MW-1D-F(0.2)-0215	Dissolved	Water	3005A	
LCS 680-370514/2-A	Lab Control Sample	Total Recoverable	Water	3005A	
MB 680-370514/1-A	Method Blank	Total Recoverable	Water	3005A	

Analysis Batch: 370847

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-109732-1	BSA-MW-1S-2015	Total Recoverable	Water	6010C	370514
680-109732-2	BSA-MW-1S-F(0.2)-0215	Dissolved	Water	6010C	370514
680-109732-4	CPA-MW-1D-0215	Total Recoverable	Water	6010C	370514
680-109732-5	CPA-MW-1D-F(0.2)-0215	Dissolved	Water	6010C	370514
LCS 680-370514/2-A	Lab Control Sample	Total Recoverable	Water	6010C	370514
MB 680-370514/1-A	Method Blank	Total Recoverable	Water	6010C	370514

General Chemistry

Analysis Batch: 175822

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-109732-1 - DL	BSA-MW-1S-2015	Total/NA	Water	415,1	
680-109732-1 DU - DL	BSA-MW-1S-2015	Total/NA	Water	415.1	
680-109732-1 MS - DL	BSA-MW-1S-2015	Total/NA	Water	415.1	
680-109732-4	CPA-MW-1D-0215	Total/NA	Water	415.1	
LCS 160-175822/33	Lab Control Sample	Total/NA	Water	415.1	
MB 160-175822/32	Method Blank	Total/NA	Water	415.1	

Analysis Batch: 175823

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-109732-2 - DL	BSA-MW-1S-F(0.2)-0215	Dissolved	Water	415.1	
680-109732-2 DU - DL	BSA-MW-1S-F(0.2)-0215	Dissolved	Water	415.1	
680-109732-2 MS - DL	BSA-MW-1S-F(0.2)-0215	Dissolved	Water	415.1	
680-109732-5	CPA-MW-1D-F(0.2)-0215	Dissolved	Water	415.1	
LCS 160-175823/74	Lab Control Sample	Dissolved	Water	415.1	
MB 160-175823/73	Method Blank	Dissolved	Water	415.1	

Analysis Batch: 370023

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-109732-1	BSA-MW-1S-2015	Total/NA	Water	353,2	
680-109732-4	CPA-MW-1D-0215	Total/NA	Water	353.2	
LCS 680-370023/16	Lab Control Sample	Total/NA	Water	353.2	
MB 680-370023/13	Method Blank	Total/NA	Water	353.2	

Analysis Batch: 370292

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-109732-1	BSA-MW-1S-2015	Total/NA	Water	310.1	
680-109732-4	CPA-MW-1D-0215	Total/NA	Water	310.1	
LCS 680-370292/6	Lab Control Sample	Total/NA	Water	310.1	
LCSD 680-370292/15	Lab Control Sample Dup	Total/NA	Water	310.1	
MB 680-370292/5	Method Blank	Total/NA	Water	310.1	

TestAmerica Savannah

QC Association Summary

Client: Solutia Inc.

Project/Site: 1Q15 LTM GW Sampling - 1403345

TestAmerica Job ID: 680-109732-1

SDG: KPS140

General Chemistry (Continued)

Ana	lysis	Batc	h:	37	'0558
-----	-------	------	----	----	-------

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-109732-1	BSA-MW-1S-2015	Total/NA	Water	325.2	
680-109732-4	CPA-MW-1D-0215	Total/NA	Water	325.2	
LCS 680-370558/15	Lab Control Sample	Total/NA	Water	325.2	
MB 680-370558/5	Method Blank	Total/NA	Water	325.2	

Analysis Batch: 370565

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-109732-1	BSA-MW-1S-2015	Total/NA	Water	375.4	
680-109732-4	CPA-MW-1D-0215	Total/NA	Water	375.4	
LCS 680-370565/11	Lab Control Sample	Total/NA	Water	375.4	
MB 680-370565/17	Method Blank	Total/NA	Water	375.4	

Lab Chronicle

Client: Solutia Inc.

Project/Site: 1Q15 LTM GW Sampling - 1403345

TestAmerica Job ID: 680-109732-1

SDG: KPS140

Client Sample ID: BSA-MW-1S-2015

Date Collected: 02/06/15 09:32 Date Received: 02/07/15 09:18 Lab Sample ID: 680-109732-1

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		10000	371496	02/19/15 16:19	MMT	TAL SAV
Total/NA	Prep	3520C			370098	02/09/15 16:25	RBS	TAL SAV
Total/NA	Analysis	8270D		1	370908	02/13/15 23:55	RAM	TAL SAV
Total/NA	Analysis	RSK-175		1	371305	02/19/15 15:57	AJMC	TAL SAV
Total Recoverable	Prep	3005A			370514	02/11/15 13:40	CRW	TAL SAV
Total Recoverable	Analysis	6010C		1	370847	02/13/15 02:18	всв	TAL SAV
Total/NA	Analysis	310.1		1	370292	02/09/15 17:16	LBH	TAL SAV
Total/NA	Analysis	325.2		5	370558	02/11/15 13:28	JME	TAL SAV
Total/NA	Analysis	353.2		1	370023	02/07/15 13:41	GRX	TAL SAV
Total/NA	Analysis	375.4		5	370565	02/11/15 12:59	JME	TAL SAV
Total/NA	Analysis	415.1	DL	5	175822	02/24/15 16:45	JCB	TAL SL

Client Sample ID: BSA-MW-1S-F(0.2)-0215

Date Collected: 02/06/15 09:32 Date Received: 02/07/15 09:18 Lab Sample ID: 680-109732-2

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Dissolved	Prep	3005A			370514	02/11/15 13:40	CRW	TAL SAV
Dissolved	Analysis	6010C		1	370847	02/13/15 02:23	всв	TAL SAV
Dissolved	Analysis	415.1	DL	5	175823	02/24/15 21:03	JCB	TAL SL

Client Sample ID: BSA-MW-1S-0215-EB

Date Collected: 02/06/15 09:55 Date Received: 02/07/15 09:18 Lab Sample ID: 680-109732-3

Matrix: Water

Duan Tour	Batch	Batch	_	Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		2	371472	02/19/15 03:13	TF1	TAL SAV
Total/NA	Prep	3520C			370098	02/09/15 16:25	RBS	TAL SAV
Total/NA	Analysis	8270D		1	370908	02/14/15 00:21	RAM	TAL SAV

Client Sample ID: CPA-MW-1D-0215

Date Collected: 02/06/15 08:46 Date Received: 02/07/15 09:18 Lab Sample ID: 680-109732-4

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		250	371472	02/19/15 03:34	TF1	TAL SAV
Total/NA	Prep	3520C			370098	02/09/15 16:25	RBS	TAL SAV
Total/NA	Analysis	8270D		1	370908	02/14/15 00:46	RAM	TAL SAV
Total/NA	Analysis	RSK-175		1	371305	02/19/15 15:42	AJMC	TAL SAV
Total Recoverable	Prep	3005A			370514	02/11/15 13:40	CRW	TAL SAV
Total Recoverable	Analysis	6010C		1	370847	02/13/15 02:27	ВСВ	TAL SAV
Total/NA	Analysis	310.1		1	370292	02/09/15 17:26	LBH	TAL SAV

TestAmerica Savannah

UAB 4/2/15

Lab Chronicle

Client: Solutia Inc.

Project/Site: 1Q15 LTM GW Sampling - 1403345

TestAmerica Job ID: 680-109732-1

SDG: KPS140

Client Sample ID: CPA-MW-1D-0215

Date Collected: 02/06/15 08:46 Date Received: 02/07/15 09:18 Lab Sample ID: 680-109732-4

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	325.2		2	370558	02/11/15 13:13	JME	TAL SAV
Total/NA	Analysis	353.2		1	370023	02/07/15 13:42	GRX	TAL SAV
Total/NA	Analysis	375.4		1	370565	02/11/15 12:07	JME	TAL SAV
Total/NA	Analysis	415.1		1	175822	02/24/15 15:56	JCB	TAL SL

Client Sample ID: CPA-MW-1D-F(0.2)-0215

Date Collected: 02/06/15 08:46

Date Received: 02/07/15 09:18

Lab Sample ID: 680-109732-5

Matrix: Water

Prep Type Dissolved	Batch Type Prep	Batch Method 3005A	Run	Dilution Factor	Batch Number 370514	Prepared or Analyzed 02/11/15 13:40	Analyst CRW	Lab TAL SAV
Dissolved	Analysis	6010C		1	370847	02/13/15 02:32	ВСВ	TAL SAV
Dissolved	Analysis	415.1		1	175823	02/24/15 21:19	JCB	TAL SL

Client Sample ID: 1Q15 LTM Trip Blank #5

Date Collected: 02/06/15 00:00

Date Received: 02/07/15 09:18

Lab Sample ID: 680-109732-6

Matrix: Water

ſ		Batch	Batch			Dilution	Batch	Prepared		
	Prep Type	Type	Method	Rur	1	Factor	Number	or Analyzed	Analyst	Lab
	Total/NA	Analysis	8260B			1	371472	02/18/15 21:41	TF1	TAL SAV

Laboratory References:

TAL SAV = TestAmerica Savannah, 5102 LaRoche Avenue, Savannah, GA 31404, TEL (912)354-7858 TAL SL = TestAmerica St. Louis, 13715 Rider Trail North, Earth City, MO 63045, TEL (314)298-8566

TestAmerica Savannah

Certification Summary

Client: Solutia Inc.

Project/Site: 1Q15 LTM GW Sampling - 1403345

TestAmerica Job ID: 680-109732-1

SDG: KPS140

Laboratory: TestAmerica Savannah

All certifications held by this laboratory are listed. Not all certifications are applicable to this report.

Authority	Program	EPA Region	Certification ID	Expiration Date
	AFCEE		SAVLAB	-
A2LA	DoD ELAP		399.01	02-28-17
A2LA	ISO/IEC 17025		399.01	02-28-17
Alabama	State Program	4	41450	06-30-15
Arkansas DEQ	State Program	6	88-0692	01-31-16
California	State Program	9	2939	07-31-15
Colorado	State Program	8	N/A	12-31-15
Connecticut	State Program	1	PH-0161	03-31-15 *
Florida	NELAP	4	E87052	06-30-15
GA Dept. of Agriculture	State Program	4	N/A	06-12-17
Georgia	State Program	4	N/A	06-30-15
Georgia	State Program	4	803	06-30-15
Guam	State Program	9	09-005r	04-16-15
ławaii	State Program	9	N/A	06-30-15
linois	NELAP	5	200022	11-30-15
ndiana	State Program	5	N/A	06-30-15
owa	State Program	7	353	07-01-15
entucky (DW)	State Program	4	90084	12-31-15
entucky (UST)	State Program	4	18	06-30-15
entucky (WW)	State Program	4	90084	12-31-15
puisiana	NELAP	6	30690	06-30-15
uisiana (DW)	NELAP	6	LA150014	12-31-15
aine	State Program	1	GA00006	09-24-16
aryland	State Program	3	250	12-31-15
assachusetts	State Program	1	M-GA006	06-30-15
chigan	State Program	5	9925	
ssissippi	State Program	4	9925 N/A	06-30-15
ntana	State Program	8		06-30-15
ebraska	State Program	° 7	CERT0081	12-31-15
ew Jersey	NELAP	2	TestAmerica-Savannah	06-30-15
w Mexico			GA769	06-30-15
ew York	State Program NELAP	6	N/A	06-30-15
orth Carolina (DW)		2	10842	03-31-15 *
orth Carolina (WW/SW)	State Program	4	13701	07-31-15
klahoma	State Program	4	269	12-31-15
kianoma ennsylvania	State Program	6	9984	08-31-15
	NELAP	3	68-00474	06-30-15
uerto Rico	State Program	2	GA00006	12-31-15
outh Carolina	State Program	4	98001	06-30-15
ennessee	State Program	4	TN02961	06-30-15
exas	NELAP	6	T104704185-14-7	11-30-15
SDA	Federal		SAV 3-04	06-11-17
irginia	NELAP	3	460161	06-14-15
/ashington	State Program	10	C805	06-10-15
/est Virginia (DW)	State Program	3	9950C	12-31-15
Vest Virginia DEP	State Program	3	094	06-30-15
fisconsin	State Program	5	999819810	08-31-15
oming	State Program	8	8TMS-L	06-30-15

Laboratory: TestAmerica St. Louis

All certifications held by this laboratory are listed. Not all certifications are applicable to this report.

TestAmerica Savannah

^{*} Certification renewal pending - certification considered valid.

Certification Summary

Client: Solutia Inc.

Project/Site: 1Q15 LTM GW Sampling - 1403345

TestAmerica Job ID: 680-109732-1

SDG: KPS140

Laboratory: TestAmerica St. Louis (Continued)

All certifications held by this laboratory are listed. Not all certifications are applicable to this report.

Authority	Program	EPA Region	Certification ID	Expiration Date	
Alaska	State Program	10	MO00054	06-30-15	
California	NELAP	9	2886	03-31-15	
Connecticut	State Program	1	PH-0241	03-31-15	
Florida	NELAP	4	E87689	06-30-15	
Illinois	NELAP	5	200023	11-30-15	
Iowa	State Program	7	373	12-01-16	
Kansas	NELAP	7	E-10236	03-31-15 *	
Kentucky (DW)	State Program	4	90125	12-31-15	
L-A-B	DoD ELAP		L2305	01-10-16	
Louisiana	NELAP	6	LA150017	12-31-16	
Maryland	State Program	3	310	09-30-15	
Missouri	State Program	7	780	06-30-15	
Nevada	State Program	9	MO000542013-1	07-31-15	
New Jersey	NELAP	2	MO002	06-30-15	
New Mexico	State Program	6		06-30-10 *	
New York	NELAP	2	11616	03-31-15 *	
North Dakota	State Program	8	R207	06-30-15	
NRC	NRC		24-24817-01	12-31-22	
Oklahoma	State Program	6	9997	08-31-15	
Pennsylvania	NELAP	3	68-00540	02-28-15 *	
South Carolina	State Program	4	85002001	06-30-15	
Texas	NELAP	6	T104704193-13-6	07-31-15	
USDA	Federal		P330-07-00122	01-09-17	
Utah	NELAP	8	MO000542013-5	07-31-15	
Virginia	NELAP	3	460230	06-14-15	
Washington	State Program	10	C592	08-30-15	
West Virginia DEP	State Program	3	381	08-31-15	

^{*} Certification renewal pending - certification considered valid.

Method Summary

Client: Solutia Inc.

Project/Site: 1Q15 LTM GW Sampling - 1403345

TestAmerica Job ID: 680-109732-1

SDG: KPS140

Method	Method Description	Protocol	Laboratory
8260B	Volatile Organic Compounds (GC/MS)	SW846	TAL SAV
8270D	Semivolatile Organic Compounds (GC/MS)	SW846	TAL SAV
RSK-175	Dissolved Gases (GC)	RSK	TAL SAV
3010C	Metals (ICP)	SW846	TAL SAV
310.1	Alkalinity	MCAWW	TAL SAV
325.2	Chloride	MCAWW	TAL SAV
353.2	Nitrogen, Nitrate-Nitrite	MCAWW	TAL SAV
375.4	Sulfate	MCAWW	TAL SAV
415.1	TOC	MCAWW	TAL SL
115.1	DOC	MCAWW	TAL SL

Protocol References:

MCAWW = "Methods For Chemical Analysis Of Water And Wastes", EPA-600/4-79-020, March 1983 And Subsequent Revisions.

RSK = Sample Prep And Calculations For Dissolved Gas Analysis In Water Samples Using A GC Headspace Equilibration Technique, RSKSOP-175, Rev. 0, 8/11/94, USEPA Research Lab

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL SAV = TestAmerica Savannah, 5102 LaRoche Avenue, Savannah, GA 31404, TEL (912)354-7858

TAL SL = TestAmerica St. Louis, 13715 Rider Trail North, Earth City, MO 63045, TEL (314)298-8566

12

Sample Summary

Client: Solutia Inc.

Project/Site: 1Q15 LTM GW Sampling - 1403345

TestAmerica Job ID: 680-109732-1

SDG: KPS140

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
680-109732-1	BSA-MW-1S-2015	Water	02/06/15 09:32	02/07/15 09:18
680-109732-2	BSA-MW-1S-F(0.2)-0215	Water	02/06/15 09:32	02/07/15 09:18
680-109732-3	BSA-MW-1S-0215-EB	Water	02/06/15 09:55	02/07/15 09:18
680-109732-4	CPA-MW-1D-0215	Water	02/06/15 08:46	02/07/15 09:18
680-109732-5	CPA-MW-1D-F(0.2)-0215	Water	02/06/15 08:46	02/07/15 09:18
680-109732-6	1Q15 LTM Trip Blank #5	Water	02/06/15 00:00	02/07/15 09:18

Chain of Custody Record

TestAmerica

TestAmerica Savannah

5102 LaRoche Avenue

TestAmerica Laboratories, Inc. D. C Sample Specific Notes: SOCS 10,7 Sample Disposal (A fee may be assessed if samples are retained longer than 1 month) For Lab Use Only Date/Time; 15 1.6/1.0(OF)\.5/1.3 Nalk-in Client: ab Sampling: Job, / SDG No. ₽ Date/Time: Date/Time: COC No. 680-109732 Chain of Custody Archive for Carrier: Fed Company: Company: 17 ✓ Disposal by Lab Date: M 1 2 4 1 1 2 13 3 4 3 DOC by 415.1 3 18 Dissolved Fe/Mn by 6010C ooler Temp. (°C): Obs'd M N -ab Contact: Michele Kersey Dissolved Gases by RSK 175 Received in Laboratory by: M M Site Contact: Lori Bindner RCRA Other: 4.375 yd etsilu2.225 yd ebinold Return to Client 1K/CO2 by 310.1 Lotal Fe/Mn by 6010C OCs by 8260 M) M N 3 1 SAOCs by 8270 N NPDES < Perform MS/MSD (Y/N) -iltered Sample (Y / N) # of Cont. Possible Hazard Identification:
Are any samples from a listed EPA Hazardous Waste? Please List any EPA Waste Codes for the sample in the T J 0 WORKING DAYS Regulatory Program: Dw <u>m</u> Date/Time Date/Time: 2/10/15 Matrix 3 TAT if different from Below Standard **Analysis Turnaround Time** Project Manager: Amanda Derhake Unknown Type (C=Comp, G=Grab) 1 week 2 weeks 2 days day Custody Seal No.: 😢 í 💍 Tel/Fax: 636-724-919 CALENDAR DAYS 0932 Sample 9580 0955 Time Preservation Used: 1= lce, 2= HG|-3= H2SO4: 4=HNO3; 5=NaOH; 6= Other Poison B 30 105 Sample Date 26 35 Company: Company: Company: Skin Irritant Comments Section if the lab is to dispose of the sample. Special Instructions/QC Requirements & Comments: VOC headspace upon sampling: Yes(No) LTM TripBlank#5 JPA-MW-40-F(0,2)-0215 운 -0215 Project Name: 1Q15 LTM GW Sampling-1403345 Sample Identification BSA-MW-15-0725-EB Yes Phone Client Contact Flammable BSA-MW-1S- F(0.2) PA-NW-40-0218 Site: Solutia WG Krummrich Facility 85A-MW-15-0215 Savannah, GA 31404 phone 912.354.7858 fax Relinquished by: St. Charles, MO 63301 Custody Seals Intact: 3older Associates Inc. 320 South Main Street ✓ Non-Hazard P O # 42447936 636) 724-9191 Relinquished by: Relinquished by: 015 4/2/15 LAB

Form No. CA-C-WI-002, Rev. 4.3, dated 12/05/2013

14

Login Sample Receipt Checklist

Client: Solutia Inc.

Job Number: 680-109732-1

SDG Number: KPS140

List Source: TestAmerica Savannah

Login Number: 109732

List Number: 1

Creator: Banda, Christy S

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	N/A	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

145

Login Sample Receipt Checklist

Client: Solutia Inc.

Job Number: 680-109732-1

SDG Number: KPS140

List Source: TestAmerica St. Louis

List Creation: 02/10/15 10:24 AM

Login Number: 109732 List Number: 2 Creator: Clarke, Jill C

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td>	True	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	(2.8)
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	False	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

APPENDIX E
MICROBIAL INSIGHTS DATA PACKAGE

10515 Research Drive Knoxville, TN 37932 Phone: (865) 573-8188 Fax: (865) 573-8133

Client: Lori Bindner Phone:

Golder Associates Inc. 820 S. Main Street

Suite 100

St. Charles, MO 63301

 Identifier:
 083MA
 Date Rec:
 01/30/2015
 Report Date:
 03/23/2015

Fax:

Client Project #: 1403345 Client Project Name: W.G. Krummrich

Purchase Order #:

Analysis Requested: PLFA, Stable Isotope Probing, Standard Bio-Trap

Reviewed By:

NOTICE: This report is intended only for the addressee shown above and may contain confidential or privileged information. If the recipient of this material is not the intended recipient or if you have received this in error, please notify Microbial Insights, Inc. immediately. The data and other information in this report represent only the sample(s) analyzed and are rendered upon condition that it is not to be reproduced without approval from Microbial Insights, Inc. Thank you for your cooperation.

MICROBIAL INSIGHTS, INC.

10515 Research Dr., Knoxville, TN 37932 Tel. (865) 573-8188 Fax. (865) 573-8133

PLFA

Client:Golder Associates Inc.MI Project Number:083MAProject:W.G. KrummrichDate Received:01/30/2015

0.00

Sample Information

Sample Name:	BSA-MW-1S-02 15	BSA-MW-2D-02 15	BSA-MW-3D -0215	BSA-MW-4D-0 215	BSA-MW-5D-02 15
Sample Date:	01/29/2015	01/29/2015	01/29/2015	01/29/2015	01/29/2015
Sample Matrix:	Std. Bio-Trap	Adv. Bio-Trap	Std. Bio-Trap	Std. Bio-Trap	Std. Bio-Trap
Analyst:	BJ	BJ	BJ	BJ	BJ
Biomass Concentrations					
Total Biomass (cells/bead)	2.69E+05	2.32E+05	8.58E+04	4.26E+04	9.51E+04
Community Structure (% total PLFA)					
Firmicutes (TerBrSats)	8.31	14.66	40.62	0.00	4.95
Proteobacteria (Monos)	68.38	63.43	26.71	52.27	70.80
Anaerobic metal reducers (BrMonos)	2.12	1.21	0.00	0.00	0.00
SRB/Actinomycetes (MidBrSats)	1.27	5.98	3.26	0.00	1.40
General (Nsats)	19.94	13.76	29.40	47.73	22.86
Eukaryotes (polyenoics)	0.00	0.96	0.00	0.00	0.00
Physiological Status (Proteobacteria o	nly)				
Slowed Growth	0.26	3.51	1.25	0.48	0.10

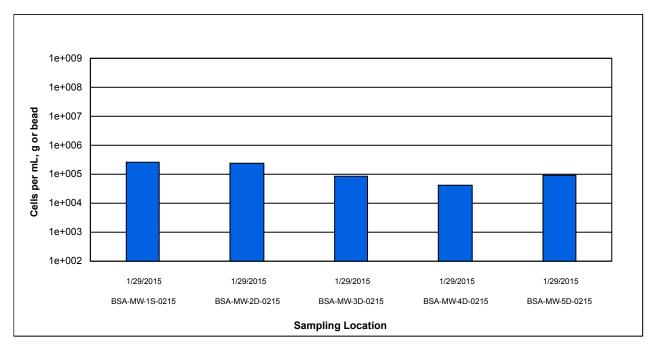
0.00

0.00

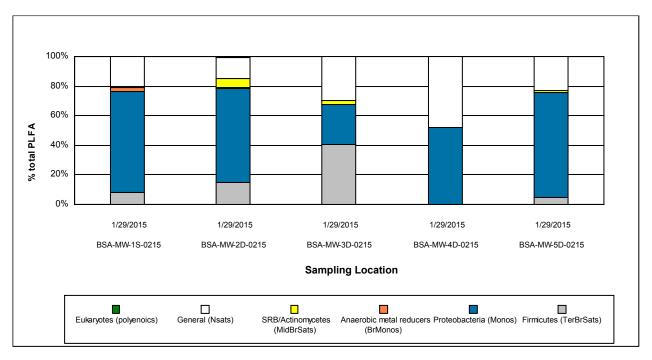
0.00

0.00

Legend:


NA = Not Analyzed NS = Not Sampled

Decreased Permeability


PLFA

10515 Research Dr., Knoxville, TN 37932 Tel. (865) 573-8188 Fax. (865) 573-8133

Client:Golder Associates Inc.MI Project Number:083MAProject:W.G. KrummrichDate Received:01/30/2015

Figure 1. Biomass content is presented as a cell equivalent based on the total amount of phospholipid fatty acids (PLFA) extracted from a given sample. Total biomass is calculated based upon PLFA attributed to bacterial and eukaryotic biomass

Figure 2. Relative percentages of total PLFA structural groups in the samples analyzed. Structural groups are assigned according to PLFA chemical structure, which is related to fatty acid biosynthesis.

MICROBIAL INSIGHTS, INC.

10515 Research Dr., Knoxville, TN 37932 Tel. (865) 573-8188 Fax. (865) 573-8133

PLFA

Client:Golder Associates Inc.MI Project Number:083MAProject:W.G. KrummrichDate Received:01/30/2015

Sample Information

•	CPA-MW-1D-02 15	CPA-MW-2D-02 15	CPA-MW-3D -0215	CPA-MW-4D-0 215	CPA-MW-5D-0 215
ample Date:	01/29/2015	01/29/2015	01/29/2015	01/29/2015	01/29/2015
ample Matrix:	Std. Bio-Trap	Std. Bio-Trap	Adv. Bio-Trap	Std. Bio-Trap	Std. Bio-Trap
nalyst:	BJ	BJ	BJ	BJ	BJ
Biomass Concentrations					
Total Biomass (cells/bead)	1.90E+05	8.30E+04	3.04E+04	7.04E+04	3.52E+04
Community Structure (% total PLFA) Firmicutes (TerBrSats)	4.36	15.61	0.00	9.15	10.11
· · · · · · · · · · · · · · · · · · ·	4.36 73.44	15.61 49.85	0.00 25.79	9.15 56.87	10.11 42.12
Firmicutes (TerBrSats)					
Firmicutes (TerBrSats) Proteobacteria (Monos)	73.44	49.85	25.79	56.87	42.12
Firmicutes (TerBrSats) Proteobacteria (Monos) Anaerobic metal reducers (BrMonos)	73.44 0.58	49.85 3.79	25.79 0.00	56.87 0.68	42.12 0.00

0.76

0.00

0.00

0.00

0.18

0.00

0.91

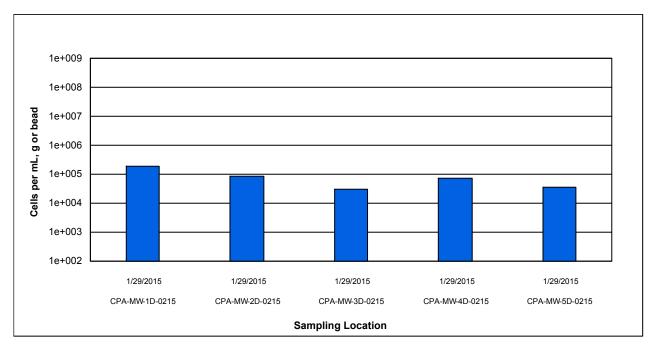
0.00

0.28

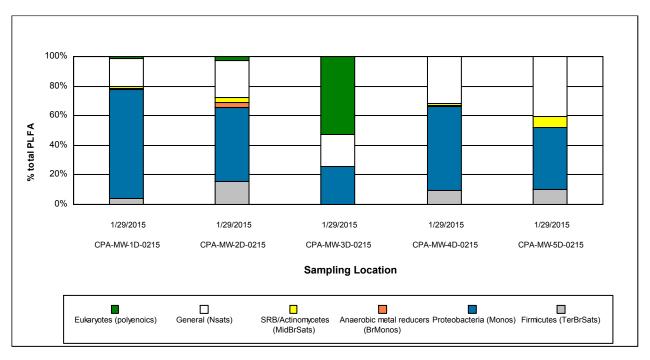
0.00

Legend:

Slowed Growth


Decreased Permeability

NA = Not Analyzed NS = Not Sampled


PLFA

10515 Research Dr., Knoxville, TN 37932 Tel. (865) 573-8188 Fax. (865) 573-8133

Client:Golder Associates Inc.MI Project Number:083MAProject:W.G. KrummrichDate Received:01/30/2015

Figure 1. Biomass content is presented as a cell equivalent based on the total amount of phospholipid fatty acids (PLFA) extracted from a given sample. Total biomass is calculated based upon PLFA attributed to bacterial and eukaryotic biomass

Figure 2. Relative percentages of total PLFA structural groups in the samples analyzed. Structural groups are assigned according to PLFA chemical structure, which is related to fatty acid biosynthesis.

10515 Research Drive Knoxville, TN 37932 Phone: (865) 573-8188 Fax: (865) 573-8133

Client Project #: 1403345 Client Project Name: W.G. Krummrich

Purchase Order #:

Comments: Please note that the total biomass for samples BSA-MW-4D-0215, CPA-MW-3D-0215, and

CPA-MW-5D-0215 fell between the detection limit and the reporting limit for PLFA analysis.

10515 Research Drive Knoxville, TN 37932 Phone (865) 573-8188 Fax: (865) 573-8133 Email: info@microbe.com

Phospholipid Fatty Acid Analysis

Interpretation Guidelines

Phospholipids fatty acids (PLFA) are a main component of the membrane (essentially the "skin") of microbes and provide a powerful tool for assessing microbial responses to changes in their environment. This type of analysis provides direct information for assessing and monitoring sites where bioremediation processes, including natural attenuation, are of interest. Analysis of the types and amount of PLFA provides a broad based understanding of the entire microbial community with information obtained in three key areas viable biomass, community structure and metabolic activity.

What is the detection limit for PLFA?

Our limit of detection for PLFA analysis is ~150 picomoles of total PLFA and our limit of quantification is ~500 picomoles of total PLFA. Samples which contain PLFA amounts at or below 150 pmol cannot be used to determine biomass, likewise samples with PLFA content below ~500 pmol are generally considered to contain too few fatty acids to discuss community composition.

How should I interpret the PLFA results?

Interpreting the results obtained from PLFA analysis can be somewhat difficult, so this document was designed to provide a technical guideline. For convenience, this guideline has been divided into the three key areas.

Viable Biomass

PLFA analysis is one of the most reliable and accurate methods available for the determination of viable microbial biomass. Phospholipids break down rapidly upon cell death (21, 23), so biomass calculations based on PLFA content do not contain 'fossil' lipids of dead cells.

How is biomass measured?

Viable biomass is determined from the total amount of PLFA detected in a given sample. Since, phospholipids are an essential part of intact cell membranes they provide an accurate measure of viable cells.

How is biomass calculated?

Biomass levels are reported as cells per gram, mL or bead, and are calculated using a conversion factor of 20,000 cells/pmole of PLFA. This conversation factor is based upon cells grown in laboratory media, and varies somewhat with the type of organism and environmental conditions.

What does the concentration of biomass mean?

The overall abundance of microbes within a given sample is often used as an indicator of the potential for bioremediation to occur, but understanding the levels of biomass within each sample can be cumbersome. The following are benchmarks that can be used to understand whether the biomass levels are low, moderate or high.

Low	Moderate	High
10 ³ to 10 ⁴ cells	10 ⁵ to 10 ⁶ cells	10 ⁷ to 10 ⁸ cells

How do I know if a change in biomass is significant?

One of the primary functions of using PLFA analysis at contaminated sites is to evaluate how a community responds following a given treatment, but how does one know if the changes observed between two events are significant? As a general rule, biomass levels which increase or decrease by at least an order of magnitude are considered to be significant. However, changes in biomass levels of less than an order of magnitude may still show a trend. It is important to remember that many factors can affect microbial growth, so factors other than the treatment could be influencing the changes observed between sampling events. Some of the factors to consider are: temperature, moisture, pH, etc. The following illustration depicts three types of changes that occurred over time and the conclusions that could be drawn.

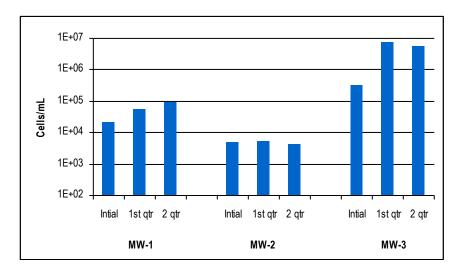


Figure 1. Biomass content is presented as a cell equivalent based on the total amount of phospholipid fatty acids (PLFA) extracted from a given sample. Total biomass is calculated based upon PLFA attributed to bacterial and eukaryotic biomass (associated with higher organisms).

Conclusions from graph above:

- MW-1 showed a trend of biomass levels increasing steadily over time, although cell concentrations were ~10⁴ cells/mL at each sampling event.
- MW-2 showed no notable trends or significant changes in biomass concentrations.
- MW-3 showed a significant increase in biomass levels between the initial and 1st quarter sampling events (from ~10⁵ to ~10⁶ cells/mL).

Community Structure:

The PLFA in a sample can be separated into particular types, and the resulting PLFA "profile" reflects the proportions of the categories of organisms present in the sample. Because groups of bacteria differ in their metabolic capabilities, determining which bacterial groups are present and their relative distributions within the community can provide information on what metabolic processes are occurring at that location. This in turn can also provide information on the subsurface conditions (i.e oxidation/reduction status, etc.). Table 1 describes the six major structural groups used and their potential relevance to site specific projects.

 Table 1. Description of PLFA structural groups.

PLFA Structural Group	General classification	Potential Relevance to Bioremediation Studies
Monoenoic (Monos)	Abundant in Proteobacteria (Gram negative bacteria), typically fast growing, utilize many carbon sources, and adapt quickly to a variety of environments.	Proteobacteria is one of the largest groups of bacteria and represents a wide variety of both aerobes and anaerobes. The majority of Hydrocarbon utilizing bacteria fall within the Proteobacteria
Terminally Branched Saturated (TerBrSats)	Characteristic of Firmicutes (Low G+C Gram-positive bacteria), and also found in Bacteriodes, and some Gram-negative bacteria (especially anaerobes).	Firmicutes are indicative of presence of anaerobic fermenting bacteria (mainly <i>Clostridia/Bacteriodes</i> -like), which produce the H ₂ necessary for reductive dechlorination
Branched Monoenoic (BrMonos)	Found in the cell membranes of micro-aerophiles and anaerobes, such as sulfate- or iron-reducing bacteria	In contaminated environments high proportions are often associated with anaerobic sulfate and iron reducing bacteria
Mid-Chain Branched Saturated (MidBrSats)	Common in sulfate reducing bacteria and also Actinobacteria (High G+C Gram-positive bacteria).	In contaminated environments high proportions are often associated with anaerobic sulfate and iron reducing bacteria
Normal Saturated (Nsats)	Found in all organisms.	High proportions often indicate less diverse populations.
Polyenoic	Found in eukaryotes such as fungi, protozoa, algae, higher plants, and animals.	Eukaryotic scavengers will often rise up and prey on contaminant utilizing bacteria

Following are answers to some of the common questions about community composition and some detailed descriptions of some typical shifts which can be observed between sampling events.

How is the community structure data presented?

Community structure data is presented as percentage (%) of the total amount of PLFA. In order to relate the complex mixture of PLFA to the organisms present, the ratio of a specific PLFA group is determined (detailed in Table 1 above), and this corresponds to the proportion of the related bacterial classification within the overall community structure. Because normal saturated PLFA are found in both prokaryotes (bacteria) and eukaryotes (fungi, protozoa, diatoms etc.), their distribution provides little insight into the types of microbes that are present at a sampling location. However, high proportions of normal saturates are often associated with less diverse microbial populations.

How can community structure data be used to manage my site?

It is important to understand that microbial communities are often a mixture of different types of bacteria (e.g. aerobes, sulfate reducers, methanogens, etc) with the abundance of each group behaving like a seesaw, i.e. as the population of one group increases, another is likely decreasing, mostly due to competition for available resources. The PLFA profile of a sample provides a "fingerprint" of the microbial community, showing relative proportions of the specific bacterial types at the time of sampling. This is a great tool for detecting shifts within the community over time and also to evaluate similarities/differences between sampling locations. It is important to note that PLFA analysis of community structure is analyzing the microbes directly, not just secondary breakdown products. So this provides evidence of how the entire microbial community is responding to the treatment.

How do I recognize community shifts and what they mean?

Shifts in the community structure are indications of changing conditions and their effect on the microbial community, and, by extension on the metabolic processes occurring at the sampling location. Some of the more commonly seen shifts within the community are illustrated and discussed below:

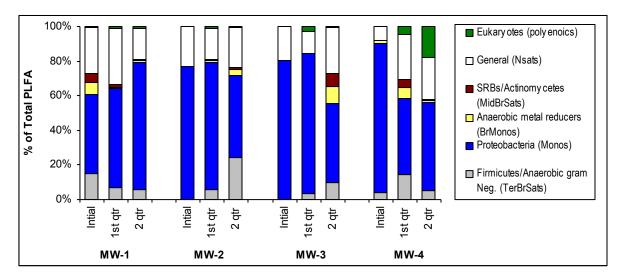


Figure 2. Relative percentages of total PLFA structural groups in the samples analyzed. Structural groups are assigned according to PLFA chemical structure, which is related to fatty acid biosynthesis. See Table 1 for detailed descriptions of structural groups.

Increased Proteobacteria

Proportions of Proteobacteria are of interest because it is one of the largest groups of bacteria and represents a wide variety of both aerobe and anaerobes. The majority of hydrocarbons (including benzene and naphthalene) are metabolized by some member of Proteobacteria, mainly due to their ability to grow opportunistically, quickly taking advantage of available food (i.e. hydrocarbons), and adapting quickly to changes in the environment. The detection of increased proportions of Proteobacteria coupled with increased biomass suggests that the Proteobacteria are consuming something. In situations where it is important to determine the extent to which the Proteobacteria are utilizing anaerobic or aerobic pathways, it is possible to measure relative proportions of specific biomarkers that are associated with anaerobic or aerobic pathways thus separating the Proteobacteria into different groups, based on pathways used. Sample MW-1 from Figure 2 depicts a shift in community structure where the proportion of Proteobacteria has increased over time.

Increased Firmicutes/Anaerobic Gram negative bacteria

Increased proportions of Firmicutes/Anaerobic Gram negative bacteria generally indicate that conditions are becoming more reductive (i.e. more anaerobic). Proportions of Firmicutes are of particular interest in sites contaminated with chlorinated hydrocarbons because Firmicutes include anaerobic fermenting bacteria (mainly Clostridia/Bacteriodes-like), which produce the H_2 necessary for reductive dechlorination.

Enhanced bioremediation of chlorinated solvents often employs the injection of fermentable substrates which, when utilized by fermenting bacteria, results in the release of H₂. Engineered shifts in the microbial community can be shown by observing increased proportions Firmicutes following an injection of fermentable substrate. Through long-term monitoring of the community structure it is possible to know when re-injection may be necessary or desirable. Sample MW-2 from Figure 2 depicts a shift in community structure where the proportion of Firmicutes has increased over time.

Increased anaerobic metal reducing bacteria (BrMonos) and SRB/Actinomycetes (MidBrSats)

An increase in the proportions of metal and sulfate reducing bacterial groups, especially when combined with shifts in the other bacterial groups, can provide information helpful to monitoring bioremediation. Generally, an increase in metal and sulfate reducers points to more reduced (anaerobic) conditions at the sampled location. This is especially true if there is an increase in Firmicutes at the same time. Large increases in either metal and sulfate reducers, particularly if accompanied by a decrease in Firmicutes, may suggest that conditions are becoming increasingly reduced. In this situation the metal and sulfate reducers may be out-competing dechlorinators for available H₂, thereby limiting the potential for reductive dechlorination at that location. Sample MW-3 from Figure 2 depicts a shift in community structure where the proportion of metal reducing bacteria has increased over time.

Increased Eukaryotes

Eukaryotes include organisms such as fungi, protozoa, and diatoms. At a contaminated location, an increase in eukaryotes, particularly if seen with a decrease in the contaminant utilizing bacteria, suggests that eukaryotic scavengers are preying upon what had been an abundance of bacteria which were consuming the contaminant. Sample MW-4 from Figure 2 depicts a shift in community structure where the proportion of eukaryotes has increased over time.

Physiological status of Proteobacteria

The membrane of a microbe adapts to the changing conditions of its environment, and these changes are reflected in the PLFA. Toxic compounds or environmental conditions may disrupt the membrane and some bacteria respond by making *trans* fatty acids instead of the usual *cis* fatty acids (7) in order to strengthen the cell membrane, making it less permeable. Many Proteobacteria respond to lack of available substrate or to highly toxic conditions by making cyclopropyl (7) or mid-chain branched fatty acids (20) which point to less energy expenditure and a slowed growth rate. The physiological status ratios for Decreased Permeability (trans/cis ratio) and for Slowed Growth (cy/cis ratio) are based on dividing the amount of the fatty acid induced by environmental conditions by the amount of its biosynthetic precursor.

What does slowed growth or decreased permeability mean?

Ratios for slowed growth and for decreased permeability of the cell membrane provide information on the "health" of the Gram negative community, that is, how this population is responding to the conditions present in the environment. It should be noted that one must be cautious when interpreting these measures from only one sampling event. The most effective way to use the physiological status indicators is in long term monitoring and comparing how these ratios increase/decrease over time.

A marked increase in either of these ratios suggests a change in environment which is less favorable to the Gram negative Proteobacteria population. The ratio for slowed growth is a relative measure, and does not directly correspond to log or stationary phases of growth, but is useful as a comparison of growth rates among sampling locations and also over time. An increase in this ratio (i.e. slower growth rate) suggests a change in conditions which is not as supportive of rapid, "healthy" growth of the Gram negative population, often due to reduced available substrate (food). A larger ratio for decreased permeability suggests that the environment has become more toxic to the Gram negative population, requiring energy expenditure to produce *trans* fatty acids in order to make the membrane more rigid.

References

- 1. Amann, R. I., W. Ludwig, and K.-H. Schleifer. 1995. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiological Reviews 59:143-169.
- 2. Cottrell, MT and David L. Kirchman. Appl Environ Microbiol. 2000 April; 66 (4): 16921697.
- 3. Gillis, M., V. Tran Van, R. Bardin, M. Goor, P. Hebbar, A. Willems, P. Segers, K. Kerstens, T. Heulin, and M. P. Fernadez. 1995. Polyphasic taxonomy in the genus Burkholderia leading to an amended description of the genus and proposition of Burkholderia vietnamiensis sp. nov. for N2-fixing isolates from rice in Vietnam. Int. J. Syst. Bacteriol. 45:274-289.
- Dowling, N. J. E., F. Widdel, and D. C. White. 1986. Phospholipid ester-linked fatty acid biomarkers of acetate-oxidizing sulfate reducers and other sulfide forming bacteria. Journal of General Microbiology 132:1815-1825.
- 5. Edlund, A., P. D. Nichols, R. Roffey, and D. C. White. 1985. Extractable and lipopolysaccharide fatty acid and hydroxy acid profiles from Desulfovibrio species. Journal of Lipid Research 26:982-988.
- 6. Guckert, J. B., C. P. Antworth, P. D. Nichols, and D. C. White. 1985. Phospholipid ester-linked fatty acid profiles as reproducible assays for changes in prokaryotic community structure of estuarine sediments. FEMS Microbiol. Ecol. 31:147-158.
- Guckert, J. B., M. A. Hood, and D. C. White. 1986. Phospholipid ester-linked fatty acid profile changes during nutrient deprivation of Vibrio cholerae: increases in the trans/cis ratio and proportions of cyclopropyl fatty acids. Appl. Environ. Microbiol. 52:794

 –801.
- 8. Hedrick, D.B., A Peacock, J.R. Stephen, S.J. Macnaughton, Julia Brüggemann, and David C. White. 2000. Measuring soil microbial community diversity using polar lipid fatty acid and denatured gradient gel electrophoresis data. J. Microbiol. Methods, 41, 235-248.
- 9. ITRC Internet Training on Natural Attenuation of Chlorinated Solvents in Groundwater: Principles and Practices, Apr 00.
- 10. Löffler, F. E., Q. Sun, et al. (2000). "16S rRNA gene-based detection of tetrachloroethene-dechlorinating Desulfuromonas and Dehalococcoides species." Appl Environ Microbiol 66(4): 1369-1374.
- 11. Maymo-Gatell X, Chien Y, Gossett JM, Zinder SH. 1997. Isolation of a bacterium that reductively dechlorinates tetrachloroethene to ethene. Science 276(5318):1568-71.
- Muyzer, G., E. C. De Waal, and A. G. Uitterlinden. 1993. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Applied and Environmental Microbiology 59:695-700.
- 13. Ribosomal Database Project (http://rdp.cme.msu.edu. National Center for Biotechnology Information. (http://www.ncbi.nlm.nih.gov/)
- Overman, J., "Family Chlorobiaceae," in M. Dworkin et al., eds., The Prokaryotes: An Evolving Electronic Resource for the Microbiological Community, 3rd edition, release 3.7, November 2, 2001, Springer-Verlag, New York, www.prokaryotes.com.
- 15. Ringelberg, D. B., G. T. Townsend, K. A. DeWeerd, J. M. Sulita, and D. C. White. 1994. Detection of the anaerobic dechlorinating microorganism Desulfomonile tiedjei in environmental matrices by its signature lipopolysaccharide branch-long-chain hydroxy fatty acids. FEMS Microbiol. Ecol. 14:9-18.
- 16. Schlötelburg, C. 2001. Mikrobielle Diversität und Dynamik einer 1,2-Dichlorpropan dechlorierenden Mischkultur (Microbial Diversity and Dynamics in a 1,2-Dichloropropane Dechlorinating Mixed Culture). Dissertation, Humbolt University, Berlin, Germany. In German: http://edoc.huberlin.de/dissertationen/schloetelburg-cord-2001-12-07/PDF/Schloetelburg.pdf
- 17. Sharp, R., D. Cossar, and R. Williams. 1995. Physiology and metabolism of Thermus. Biotechnol. Handb. 9:67-91.
- 18. Stephen, J. R., Y.-J. Chang, Y. D. Gan, A. Peacock, S. Pfiffner, M. Barcelona, D. C. White, and S. J. Macnaughton. 1999. Microbial characterization of a JP-4 fuel-contaminated site using a combined lipid biomarker/polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) based approach. Environmental Microbiology 1:231-241.
- 19. Tighe, S.W., de Lajudie, P., Dipietro, K., Lindström, K., Nick, G. & Jarvis, B.D.W. (2000). Analysis of cellular fatty acids and phenotypic relationships of Agrobacterium, Bradyrhizobium, Mesorhizobium, Rhizobium and Sinorhizobium species using the Sherlock Microbial Identification System. Int J Syst Evol Microbiol 50, 787-801.
- 20. Tsitko, I.V. Gennadi M. Zaitsev, Anatoli G. Lobanok, and Mirja S. Salkinoja-Salonen. 1999. Applied and Environmental Microbiology 65(2) 853-855.
- 21. White, D. C., W. M. Davis, J. S. Nickels, J. D. King, and R. J. Bobbie. 1979. Determination of the sedimentary microbial biomass by extractable lipid phosphate. Oecologia 40:51-62.
- White, D. C., H. C. Pinkart, and D. B. Ringelberg. 1997. Biomass measurements: Biochemical approaches, p. 91-101. In C. J. Hurst, G. R. Knudsen, M. J. McInerney, L. D. Stetzenbach, and M. V. Walter (ed.), Manual of Environmental Microbiology. ASM Press, Washington.
- 23. White, D. C., and D. B. Ringelberg. 1995. Utility of signature lipid biomarker analysis in determining in situ viable biomass, community structure, and nutritional / physiological status of the deep subsurface microbiota. In P. S. Amy and D. L. Halderman (ed.), The microbiology of the terrestrial subsurface. CRC Press, Boca Raton.
- White, D. C., J. O. Stair, and D. B. Ringelberg. 1996. Quantitative comparisons of in situ microbial biodiversity by signature biomarker analysis. Journal of Industrial Microbiology 17:185-196.
- 25. Vandamme P, Pot B, Gillis M, de Vos P, Kersters K, Swings J. Polyphasic taxonomy, a consensus approach to bacterial systematics. Microbiol Rev 1996 Jun;60(2):407-38.

SITE LOGIC Report

Stable Isotope Probing (SIP) Study

Contact: Lori Binder

Address: **Golder Associates**

820 S. Main Street

Suite 100

St. Charles, MO 63301

Report Date: 083MA March 23, 2015

Phone:

Email:

(636) 724-9191

lbindner@golder.com

Project: W.G. Krummrich; # 140-3345

Comments:

MI Identifier:

NOTICE: This report is intended only for the addressee shown above and may contain confidential or privileged information. If the recipient of this material is not the intended recipient or if you have received this in error, please notify Microbial Insights, Inc. immediately. The data and other information in this report represent only the sample(s) analyzed and are rendered upon condition that it is not to be reproduced without approval from Microbial Insights, Inc. Thank you for your cooperation.

Executive Summary

A Stable Isotope Probing (SIP) study was performed to determine whether biodegradation of benzene and chlorobenzene is occurring under existing site conditions. Bio-Trap® samplers baited with ¹³C labeled benzene and ¹³C labeled chlorobenzene were deployed in monitoring wells BSA-MW-2D-0215 and CPA-MW-3D-0215, respectively. Following a 24-day deployment period, the Bio-Traps were recovered to quantify ¹³C incorporation into biomass and dissolved inorganic carbon (DIC). A complete summary of the SIP results is provided in Table 1 and Figures 1 through 5. Tables 2 and 3 and Figures 6 through 9 contain summaries of PLFA analysis performed on standard Bio-Trap samplers deployed in BSA and CPA monitoring wells.

Stable Isotope Probing (SIP)

- Evidence for biodegradation of benzene in BSA-MW-2D-0215 and chlorobenzene in CPA-MW-3D-0215 was inconclusive, as the ¹³C-enriched biomass fell below the detection limit in both samples.
- A moderate DIC δ^{13} C value was detected in well BSA-MW-2D-0215 (337.11‰), indicating benzene had been mineralized during the deployment period.
- A DIC δ^{13} C value near background level was detected in well CPA-MW-3D-0215 (-6.69%), indicating little or no chlorobenzene had been mineralized during the deployment period.
- The total PLFA biomass concentration in well BSA-MW-2D-0215 (2.32E+05) was within the moderate range, while the total biomass in well CPA-MW-3D-0215 fell between the reporting limit and the method detection limit.
- The PLFA community structure in well BSA-MW-2D-0215 was primarily comprised of monoenoics, indicating Proteobacteria, terminally branched saturates, and normal saturates. The profile for BSA-MW-2D-0215 also had indicators of anaerobic metal reducers, actinomycetes, and eukaryotes.
- In well CPA-MW-3D-0215, eukaryotes were the primary group detected, followed by monoenoics and normal saturates.

PLFA Analysis - Standard Bio-Traps

- A moderate biomass concentration was detected in BSA-MW-1S-0215 (10⁵ cells/bead), while a lower concentration was detected in BSA-MW-3D-0215 (10⁴ cells/bead) and BSA-MW-5D-0215 (10⁴ cells/bead). Total biomass in well BSA-MW-4D-0215 fell between the reporting limit and the method detection limit for the PLFA analysis.
 - Monoenoic fatty acids (indicators of Proteobacteria) were the most abundant group identified in the BSA wells, followed by normal saturates and terminally branched saturates.
- A moderate biomass concentration was detected in CPA-MW-1D-0215 (10⁵ cells/bead). In wells CPA-MW-2D-0215 and CPA-MW-4D-0215 the total PLFA biomass concentrations fell within the lower range (10⁴ cells/bead). Total biomass in wells CPA-MW-3D-0215 and CPA-MW-5D-0215 fell between the reporting limit and the method detection limit.
 - The microbial community structures indicated that monoenoic fatty acids were the most abundant group in the CPA wells followed by normal saturates and indicators of firmicutes.

Overview of Approach

Stable Isotope Probing (SIP)

Stable isotope probing (SIP) is an innovative method to track the environmental fate of a "labeled" contaminant of concern to unambiguously demonstrate biodegradation. Two stable carbon isotopes exist in nature – carbon 12 (¹²C) which accounts for 99% of carbon and carbon 13 (¹³C) which is considerably less abundant (~1%). With the SIP method, the Bio-Trap® sampler is baited with a specially synthesized form of the contaminant containing ¹³C labeled carbon. Since ¹³C is rare, the labeled compound can be readily differentiated from the contaminants present at the site. Following deployment, the Bio-Trap® is recovered and three approaches are used to conclusively demonstrate biodegradation of the contaminant of concern.

- The loss of the labeled compound provides an estimate of the degradation rate (% loss of ¹³C).
- Quantification of ¹³C enriched phospholipid fatty acids (PLFA) indicates incorporation into microbial biomass.
- Quantification of ¹³C enriched dissolved inorganic carbon (DIC) indicates contaminant mineralization.

Phospholipid Fatty Acids (PLFA)

PLFA are a primary component of the membrane of all living cells including bacteria. PLFA decomposes rapidly upon cell death (1, 2), so the total amount of PLFA present in a sample is indicative of the viable biomass. When combined with stable isotope probing (SIP), incorporation of ¹³C into PLFA is a conclusive indicator of biodegradation.

Some organisms produce "signature" types of PLFA allowing quantification of important microbial functional groups (e.g. iron reducers, sulfate reducers, or fermenters). The relative proportions of the groups of PLFA provide a "fingerprint" of the microbial community. In addition, *Proteobacteria* modify specific PLFA during periods of slow growth or in response to environmental stress providing an index of their health and metabolic activity.

Fax: 865.573.8133 www.microbe.com

Results

Table 1. Summary of the results obtained from the Bio-Trap® Units. Interpretation guidelines and definitions are found later in the document.

Sample Name	lame BSA-MW-2D-0215	
¹³ C Contaminant Loss (µg/bead)		
¹³ C Benzene Pre-deployment	157 ± 18	
¹³ C Benzene Post-deployment	111 ± 11	
¹³ C Chlorobenzene Pre-deployment		126 ± 7
¹³ C Chlorobenzene Post-deployment		119 ± 12
Biomass & ¹³ C Incorporation		
Total Biomass (Cells/bead)	2.32E+05	3.04E+04 (J)
¹³ C Enriched Biomass (Cells/bead)	ND	ND
Average PLFA Del (‰)	ND	ND
Maximum PLFA Del (‰)	ND	ND
¹³ C Mineralization		
DIC Del (‰)	337.11	-6.69
% 13C	1.47	1.10
Community Structure (% total PLFA)		
Firmicutes (TerBrSats)	14.7	0.0
Proteobacteria (Monos)	63.4	25.8
Anaerobic metal reducers (BrMonos)	1.2	0.0
Actinomycetes (MidBrSats)	6.0	0.0
General (Nsats)	13.8	21.6
Eukaryotes (Polyenoics)	1.0	52.6
Physiological Status (Proteobacteria only)		
Slowed Growth	3.51	0.00
Decreased Permeability	0.00	0.00

Legend:

ND = Not detected J = Estimated result below PQL but above LQL

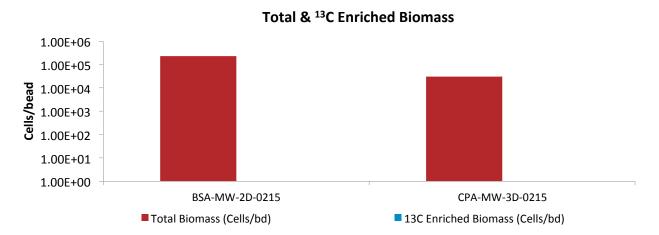
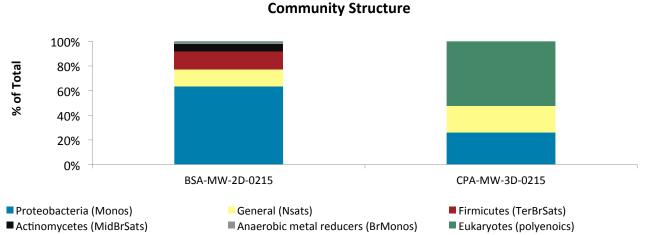



Figure 1. Biomass content is presented as a cell equivalent based on the total amount of phospholipid fatty acids (PLFA) extracted from a given sample. Total biomass is calculated based upon PLFA attributed to bacterial and eukaryotic biomass (associated with higher organisms).

Figure 2. Relative percentages of total PLFA structural groups in the samples analyzed. Structural groups are assigned according to PLFA chemical structure, which is related to fatty acid biosynthesis. See the table in the interpretation section for detailed descriptions of the structural groups.

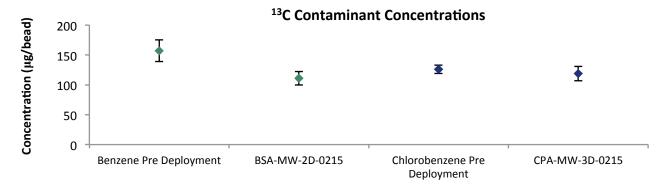
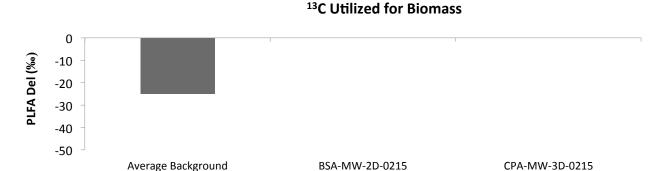
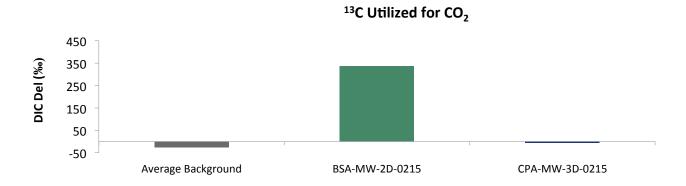




Figure 3. Comparison of Pre-deployment concentrations loaded on Bio-Sep beads to the concentrations detected after incubation.

Figure 4. Comparison of the average Del value obtained from PLFA biomarkers from each Bio-Trap® unit to the average background Del observed in samples not exposed to ¹³C enriched compounds.

Figure 5. Comparison of the Del value obtained from DIC from each Bio-Trap® unit to the average background Del observed in samples not exposed to ¹³C enriched compounds.

Fax: 865.573.8133 www.microbe.com

Table 2. Summary of the PLFA results for the benzene wells obtained from the Bio-Trap® Units.

Sample Name	BSA-MW-1S- 0215	BSA-MW-2D- 0215	BSA-MW-3D- 0215	BSA-MW-4D- 0215	BSA-MW-5D- 0215
Biomass Concentration					
Total Biomass (Cells/bead)	2.69E+05	2.32E+05	8.58E+04	4.26E+04 (J)	9.51E+04
Community Structure (% total PLFA)					
Firmicutes (TerBrSats)	8.3	14.7	40.6	0.0	5.0
Proteobacteria (Monos)	68.4	63.4	26.7	52.3	70.8
Anaerobic metal reducers (BrMonos)	2.1	1.2	0.0	0.0	0.0
Actinomycetes (MidBrSats)	1.3	6.0	3.3	0.0	1.4
General (Nsats)	19.9	13.8	29.4	47.7	22.9
Eukaryotes (Polyenoics)	0.0	1.0	0.0	0.0	0.0
Physiological Status (Proteobacteria only)					
Slowed Growth	0.26	3.51	1.25	0.48	0.10
Decreased Permeability	0.00	0.00	0.00	0.00	0.00

Table 3. Summary of the PLFA results for the chlorobenzene wells obtained from the Bio-Trap® Units.

Sample Name	CPA-MW-1D- 0215	CPA-MW-2D- 0215	CPA-MW-3D- 0215	CPA-MW-4D- 0215	CPA-MW-5D- 0215
Biomass Concentration					
Total Biomass (Cells/bead)	1.90E+05	8.30E+04	3.04E+04 (J)	7.04E+04	3.52E+04 (J)
Community Structure (% total PLFA)					
Firmicutes (TerBrSats)	4.4	15.6	0.0	9.2	10.1
Proteobacteria (Monos)	73.4	49.9	25.8	56.9	42.1
Anaerobic metal reducers (BrMonos)	0.6	3.8	0.0	0.7	0.0
Actinomycetes (MidBrSats)	1.3	3.3	0.0	1.8	7.1
General (Nsats)	19.2	24.8	21.6	31.6	40.7
Eukaryotes (Polyenoics)	1.1	2.6	52.6	0.0	0.0
Physiological Status (Proteobacteria only)					
Slowed Growth	0.28	0.76	0.00	0.18	0.91
Decreased Permeability	0.00	0.00	0.00	0.00	0.00

Legend:

ND = Not detected J = Estimated result below PQL but above LQL

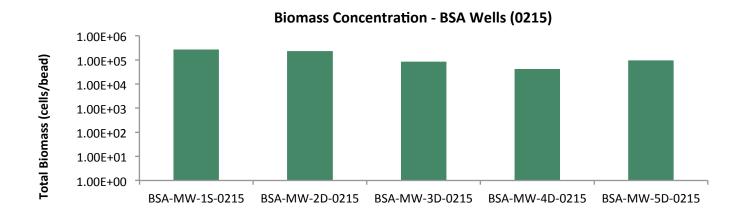
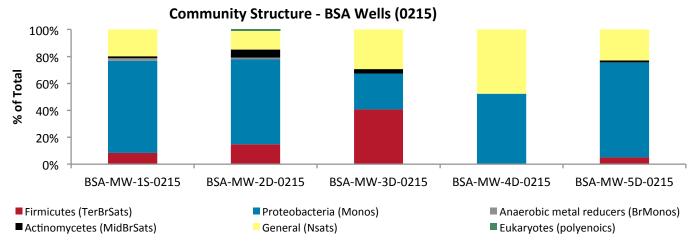



Figure 6. Biomass content is presented as a cell equivalent based on the total amount of phospholipid fatty acids (PLFA) extracted from a given sample. Total biomass is calculated based upon PLFA attributed to bacterial and eukaryotic biomass (associated with higher organisms).

Figure 7. Relative percentages of total PLFA structural groups in the samples analyzed. Structural groups are assigned according to PLFA chemical structure, which is related to fatty acid biosynthesis. See the table in the interpretation section for detailed descriptions of the structural groups.

www.microbe.com

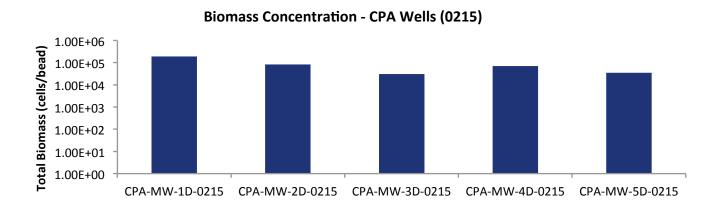
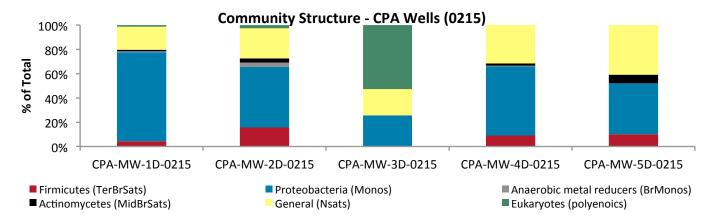



Figure 8. Biomass content is presented as a cell equivalent based on the total amount of phospholipid fatty acids (PLFA) extracted from a given sample. Total biomass is calculated based upon PLFA attributed to bacterial and eukaryotic biomass (associated with higher organisms).

Figure 9. Relative percentages of total PLFA structural groups in the samples analyzed. Structural groups are assigned according to PLFA chemical structure, which is related to fatty acid biosynthesis. See the table in the interpretation section for detailed descriptions of the structural groups.

Interpretation

Interpretation of the results of the SIP Bio-Trap® study must be performed with due consideration of site conditions, site activities, and the desired treatment mechanism. The following discussion describes interpretation of results in general terms and is meant to serve as a guide.

Contaminant Concentration: Bio-Traps® are baited with a ¹³C labeled contaminant of concern and a pre-deployment concentration is determined prior to shipping. Following deployment, Bio-Traps® are recovered for analysis including measurement of the concentration of the ¹³C labeled contaminant remaining. Pre- and post-deployment concentrations are used to calculate percent loss.

Biomass Concentrations: PLFA analysis is one of the most reliable and accurate methods available for the determination of viable (live) biomass. Phospholipids break down rapidly upon cell death, so biomass calculations based on PLFA content do not include "fossil" lipids from dead cells. Total biomass (cells/bead) is calculated from total PLFA using a conversion factor of 20,000 cells/pmole of PLFA. When making comparisons between wells, treatments, or over time, differences of one order of magnitude or more are considered significant.

	Total Biomass	
Low	Moderate	High
10 ³ to 10 ⁴ cells	10^5 to 10^6 cells	10 ⁷ to 10 ⁸ cells

For SIP studies, the ¹³C enriched PLFA is also determined to conclusively demonstrate contaminant biodegradation and quantify incorporation into biomass as a result of the ¹³C being used for cellular growth. The % ¹³C incorporation (¹³C enriched biomass/total biomass) is also provided in the data summary table, but the value must be interpreted carefully especially when comparing wells or treatments. Typically, biodegradation of a contaminant of concern is performed by a small subset of the total microbial community. For Bio-Traps® with large total biomass, the % ¹³C incorporation value could be low despite significant ¹³C labeled biomass and loss of the compound. The % ¹³C incorporation should be viewed in light of total biomass, percent loss, and dissolved inorganic carbon (DIC) results.

 13 C enrichment data is often reported as a del value. The del value is the difference between the isotopic ratio (13 C/ 12 C) of the sample (R_x) and a standard (R_{std}) normalized to the isotopic ratio of the standard (R_{std}) and multiplied by 1,000 (units are parts per thousand, denoted ‰).

 R_{std} is the naturally occurring isotopic ratio and is approximately 0.011180 (roughly 1% of naturally occurring carbon is 13 C). The isotopic ratio, R_x , of PLFA is typically less than the R_{std} under natural conditions, resulting in a del value between -20 and -30‰. For a SIP Bio-Trap® study, biodegradation and incorporation of the 13 C labeled compound into PLFA results in a larger 13 C/ 12 C ratio (R_x) and thus del values greater than under natural conditions. Typical PLFA del values are provided below.

	PLFA Del (‰)	
Low	Moderate	High
0 to 100	100 to 1,000	>1,000

Fax: 865.573.8133 www.microbe.com

Dissolved Inorganic Carbon (DIC): Often, bacteria can utilize the 13 C labeled compound as both a carbon and energy source. The 13 C portion used as a carbon source for growth can be incorporated into PLFA as discussed above, while the 13 C used for energy is oxidized to 13 CO₂ (mineralized).

 13 C enriched CO₂ data is often reported as a del value as described above for PLFA. Under natural conditions, the R_x of CO₂ is approximately the same as R_{std} (0.01118 or about 1.1% 13 C). For an SIP Bio-Trap® study, mineralization of the 13 C labeled contaminant of concern would lead to a greater value of R_x (increased 13 CO₂ production) and thus a positive del value. As with PLFA, del values between 0 and 100% are considered low, values between 100 and 1,000% are considered moderate, and values greater than 1,000% are considered high. Thus DIC 13 C are considered low if the value is less than 1.23%, moderate if between 1.23 and 2.24%, and high if greater than 2.24%.

Dissolved Inorganic Carbon (DIC) Del and % ¹³ C							
Low	Moderate	High					
0 to 100	100 to 1,000	>1,000					
1.11 to 1.23%	1.23 to 2.24%	>2.24%					

Community Structure (% total PLFA): Community structure data is presented as a percentage of PLFA structural groups normalized to the total PLFA biomass. The relative proportions of the PLFA structural groups provide a "fingerprint" of the types of microbial groups (e.g. anaerobes, sulfate reducers, etc.) present and therefore offer insight into the dominant metabolic processes occurring at the sample location. Thorough interpretation of the PLFA structural groups depends in part on an understanding of site conditions and the desired microbial biodegradation pathways. For example, an increase in mid chain branched saturated PLFA (MidBrSats), indicative of sulfate reducing bacteria (SRB) and *Actinomycetes*, may be desirable at a site where anaerobic BTEX biodegradation is the treatment mechanism, but would not be desirable for a corrective action promoting aerobic BTEX or MTBE biodegradation. The following table provides a brief summary of each PLFA structural group and its potential relevance to bioremediation.

Table 2. Description of PLFA structural groups.

PLFA Structural Group	General classification	Potential Relevance to Bioremediation Studies			
Monoenoic (Monos)	typically fast growing, utilize many carbon sources,	Proteobacteria is one of the largest groups of bacteria and represents a wide variety of both aerobes and anaerobes. The majority of Hydrocarbon utilizing bacteria fall within the Proteobacteria			
		Firmicutes are indicative of presence of anaerobic fermenting bacteria (mainly <i>Clostridia/Bacteriodes</i> -like), which produce the H ₂ necessary for reductive dechlorination			
Branched Monoenoic (BrMonos)	Found in the cell membranes of micro-aerophiles and anaerobes, such as sulfate- or iron-reducing bacteria	In contaminated environments high proportions are often associated with anaerobic sulfate and iron reducing bacteria			
Mid-Chain Branched Saturated (MidBrSats)	Common in sulfate reducing bacteria and also Actinobacteria (High G+C Gram-positive bacteria).	In contaminated environments high proportions are often associated with anaerobic sulfate and iron reducing bacteria			
Normal Saturated (Nsats)	Found in all organisms.	High proportions often indicate less diverse populations.			
Polyenoic	Found in higher plants, and animals.	Eukaryotic scavengers will often prey on contaminant utilizing bacteria.			

Fax: 865.573.8133 www.microbe.com

Physiological Status (*Proteobacteria*): Some *Proteobacteria* modify specific PLFA as a strategy to adapt to stressful environmental conditions (3, 4). For example, *cis* monounsaturated fatty acids may be modified to cyclopropyl fatty acids during periods of slowed growth or modified to *trans* monounsaturated fatty acids to decrease membrane permeability in response to environmental stress. The ratio of product to substrate fatty acid thus provides an index of their health and metabolic activity. In general, status ratios greater than 0.25 indicate a response to unfavorable environmental conditions.

Glossary

Del: A Del value is the difference between the isotopic ratio (13 C/ 12 C) of the sample (R_x) and a standard (R_{std}) normalized to the isotopic ratio of the standard (R_{std}) and multiplied by 1,000 (units are parts per thousand denoted ‰).

 $Del = (R_x-R_{std})/R_{std} \times 1000$

References

- 1. White, D.C., W.M. Davis, J.S. Nickels, J.D. King, and R.J. Bobbie. 1979. Determination of the sedimentary microbial biomass by extractable lipid phosphate. Oecologia 40:51-62.
- 2. White, D.C. and D.B. Ringelberg. 1995. Utility of signature lipid biomarker analysis in determining in situ viable biomass. In P.S. Amy and D.L. Halderman (eds.) The microbiology of the terrestrial surface. CRC Press, Boca Raton.
- 3. Guckert, J.B., M.A. Hood, and D.C. White. 1986. Phospholipid ester-linked fatty acid profile changes during nutrient deprivation of *Vibrio chloerae*: increases in the trans/cis ratio and proportions of cyclopropyl fatty acids. Applied and Environmental Microbiology. 52:794-801.
- 4. Tsitko, I.V., G. M. Zaitsev, A. G. Lobanok, and M.S. Salkinoja-Salonen. 1999. Effect of aromatic compounds on cellular fatty acid composition of *Rhodococcus opacus*. Applied and Environmental Microbiology. 65:853-855.

APPENDIX F
PM1M AND PM1D WELL INSTALLATION LETTER REPORT

February 3, 2015 Project No.: 1420093

Mr. Jerry Rinaldi Solutia Inc. 575 Maryville Centre Drive St. Louis, MO 63141

RE: INSTALLATION AND DEVELOPMENT OF

NESTED GROUNDWATER MONITORING WELL PAIR PM1M AND PM1D

Dear Mr. Rinaldi:

Golder Associates Inc. (Golder) is pleased to submit this letter report to Solutia Inc. (Solutia) summarizing recent drilling, well installation, development, and surveying activities performed approximately two miles north of the W. G. Krummrich Facility pursuant to a September 23, 2014, meeting among Solutia, the U.S. Environmental Protection Agency (USEPA), the U.S. Geological Survey (USGS), the Illinois Department of Transportation (IDOT), et al., and Solutia's September 29, 2014, letter to those parties.. Golder conducted drilling, installation, development, and surveying of two nested wells along the south side of Interstate 55 in East St. Louis, Illinois, between January 6, 2015 and January 22, 2015. The nested wells, designated PM1M and PM1D, are screened in the middle hydrogeologic unit (MHU) and the deep hydrogeologic unit (DHU), respectively. These wells will be sampled starting 1Q15 in conjunction with the quarterly Long-Term Groundwater Monitoring Program (LTM) for the W.G. Krummrich Facility. This letter summarizes the work performed during the drilling, installation, development, and surveying of nested wells PM1M and PM1D.

DRILLING, WELL INSTALLATION, DEVELOPMENT, AND SURVEYING

A nested groundwater monitoring well pair was installed in the IDOT right-of-way (to which access was granted by IDOT Permit No. 8-28940 dated December 1, 2014) along the south side of Interstate 55, approximately two miles north of the W.G. Krummrich Facility. Figure 1 shows the location of the new wells. Cascade Drilling, L.P. (Cascade) performed the drilling and well installation under the direct supervision of Golder. The new wells were drilled and installed using sonic drilling methods with a track-mounted 600C sonic drill rig.

Continuous soil samples were logged during drilling and the alluvial soils encountered generally consisted of silty and clayey soils overlying sand and gravel deposits. The lithology recorded on the field boring logs is similar to geologic descriptions for other MHU and DHU wells in the area. Soil samples were bagged and the headspace was screened for volatile organic compounds (VOC) using a photoionization detector, but samples did not exhibit VOC impact. Field boring logs were prepared for PM1M and PM1D and are included as Attachment A.

Monitoring well PM1M was constructed of two-inch diameter stainless steel type 304 riser pipe with a tenfoot long, wire-wrapped ten-slot (0.01-inch openings) stainless steel well screen. Monitoring well PM1D was constructed of two-inch diameter stainless steel type 304 riser pipe with a five-foot long, wire-wrapped ten-slot (0.01-inch openings) stainless steel well screen. The risers on each well extend to ground surface and were fitted with tight-fitting, unvented, locked caps.

PM1M was installed with the screened interval extending from approximately 51 to 61 feet below ground surface (ft BGS). PM1D was installed with the screened interval extending from approximately 101 to 106 ft BGS. See Table 1 below for additional well construction details and Attachment B for Golder's well construction logs and also "Water Well Construction Report" forms required by and submitted to the Illinois Department of Public Health (IDPH).

Table 1: Well Construction Details

Well Identification	Northing	Easting	Ground Surface Elevation (ft MSL)	Top of Casing Elevation (ft MSL)	Top of Screen Depth (ft BGS)	Bottom of Screen Depth (ft BGS)	Top of Screen Elevation (ft MSL)	Bottom of Screen Elevation (ft MSL)	Total Depth (ft BGS)
PM1M	711838.03	2296672.04	~413	412.8	51.64	61.41	361.16	351.39	61.41
PM1D	711831.94	2296669.16	~413	412.78	101.42	106.45	311.36	306.33	106.45

Notes:

ft MSL - feet above mean sea level ft BGS – feet below ground surface

The well screen filter packs were constructed using K&E #5 well sand and extend to a height of approximately two feet above the top of the screened intervals. The bentonite seal for each new well consisted of 3/8-inch Baroid Hole Plug chips extending three feet above the filter pack. A portland cement (type I/II) and quick gel mixture was placed above the bentonite seal to approximately 2.5 ft BGS. The borings were filled to ground surface with concrete for frost protection. The wells were completed using flush-mount protective covers mounted into concrete pads. See Attachment C for photographs of well installation and completions.

Zahner and Associates, Inc. provided professional land survey of the two new wells; see Attachment D. Monitoring well coordinates and elevations are shown in Table 1 above and listed on monitoring well construction logs in Attachment B.

Initial development of the wells was performed by Cascade using a Hurricane submersible pump to pump approximately 50 gallons of water from each well. Approximately 5 well volumes of groundwater was removed from each well during additional development by Golder using a combination of mechanical surging, bailing, and pumping. Surging and bailing was performed by lowering a stainless steel bailer on a rope to vigorously evacuate the well screen interval and also remove any sediment in the bottom of the well introduced during installation. After surging and bailing, a submersible GrundfosTM pump and clean, new, polyethylene discharge tubing were used to purge groundwater from each well during development. Development and purging of the wells was performed until field parameters (pH, conductivity and temperature) stabilized after purging at least three successive well volumes.

Soil cuttings and purge water were containerized in 55-gallon drums, labeled and staged for subsequent disposal by Solutia.

CLOSING

Golder appreciates the opportunity to continue to provide environmental and engineering consulting services to Solutia. Please contact us if you have any questions about the work or require additional information.

Sincerely,

GOLDER ASSOCIATES INC.

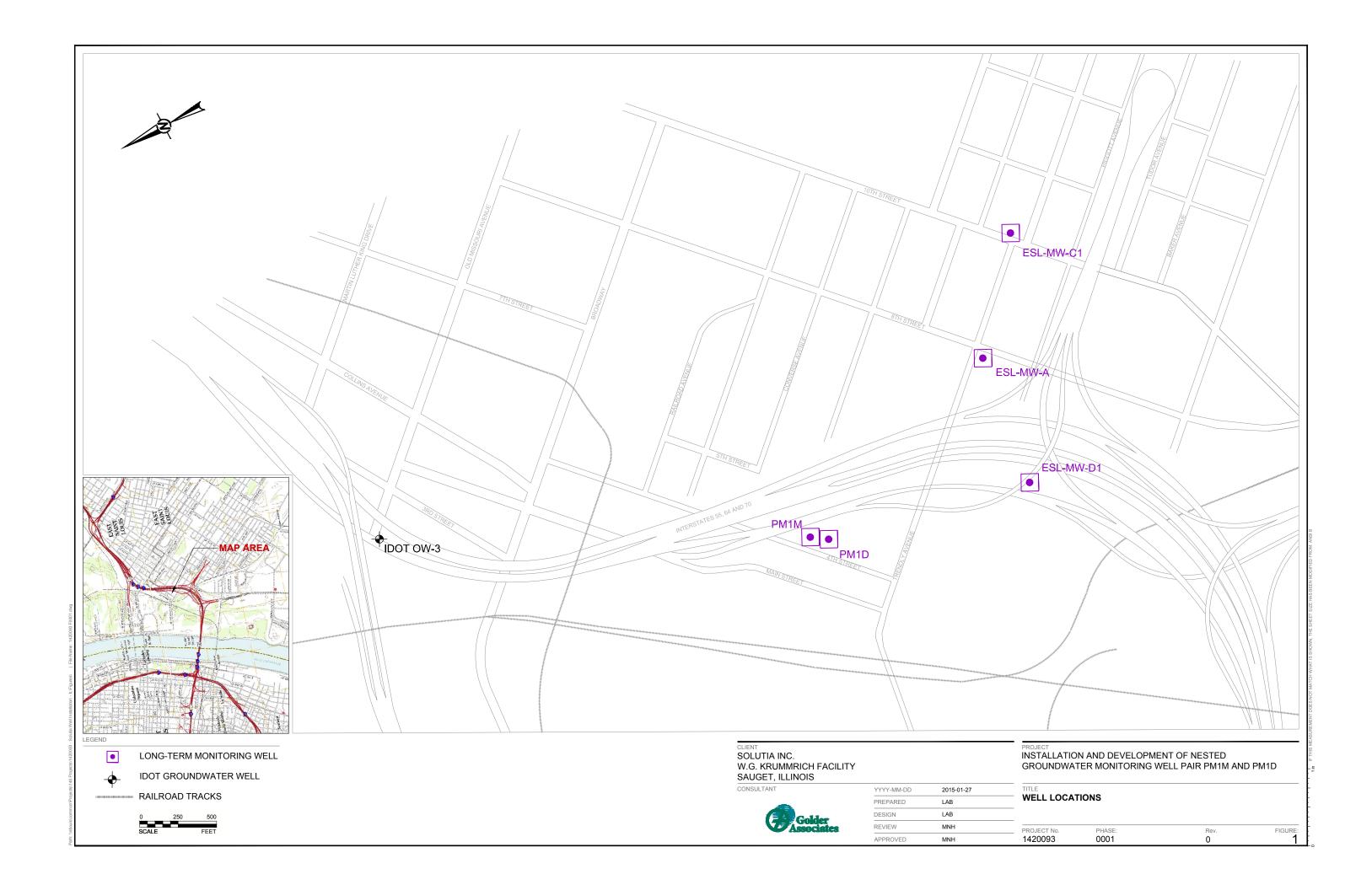
Amanda W. Derhake, Ph.D., P.E.

indnes

Senior Project Engineer

Lori A. Bindner Geological Engineer Mark N. Haddock, R.G., P.E. Senior Consultant & Associate

Mach N. efallal



February 3, 2015

Attachments
Figure 1 – Well Locations
Attachment A – Field Boring Logs
Attachment B – Well Construction Logs/Forms (Golder and IDPH)
Attachment C – Photographs
Attachment D – Survey Results

FIGURE 1 WELL LOCATIONS

ATTACHMENT A
FIELD BORING
LOGS

DEPTH HOLE	PROJ. NO. <u>1420093</u>	PROJECT WORK I WELL INSTAllation	BORING NO. PMIM
DEPTH SOIL DRILL <u>し</u>	GA INSP. <u>LAB</u>	DRILLING METHOD Sonic le finch	SHEET 1 OF 3
DEPTH ROCK CORE NA	WEATHER 7°F Mostly Sunn	Y DRILLING COMPANY Cascade Drilling	SURFACE ELEV. ~ 413 ft MSL
ABANDONMENT NA		DRILL RIG LOOC DRILLER Barden	DATUM Ground Surface
DEPTHS 24 64 St BUSI CAVE-IN	1 1/16/15 1 ——————————————————————————————————	SAMPLER HAMMER TYPE <u>NA</u> WT. <u>NA</u> DROP <u>NA</u>	STARTED 1320 1 1/7/15
DEPTHS / CAVE-IN CAVE-	DATE-TIME NOTE DATE-TIME NOTE	HOLE LOCATION E. St. Louis	COMPLETED 1415 DATE TIME DATE TIME DATE

SAMPLE TYPES ABBREVIATIONS ORDER OF DESCRIPTION	NON-COHESIVE SOILS COHESIVE SOILS
A.S. AUGER SAMPLE C.S. CHUNK SAMPLE BL BLACK HE HETEROGENEOUS D.S. DENISON SAMPLE C.S. COARSE LYD LAYERED RND ROUNDED SAT SATURATED S. PITCHER SAMPLE C.C COARSE C.C CL CLAY MOT MOST MOST T.P. THIN-WALLED, PISTON D RY WS. WASH SAMPLE EL ELONGATED ANG ANGULAR GR GRAY HE HETEROGENEOUS RX RCK RESIDUAL RRS RES RESIDUAL RRS RESIDUAL RRS RESIDUAL RRS RESIDUAL RRS RESIDUAL RRS RESIDUAL RRS RES RESIDUAL RRS RES RESIDUAL RRS RES RESIDUAL RRS RES RESIDUAL RRS RES RESIDUAL RRS RES RESIDUAL RRS RES RESIDUA	RELATIVE DENSITY BLOWS CONSISTENCY PP(TSF) FINGER PRESSURE

ELEV.		CDT N				SAMPLES		Ŧ	
DEPTH	LITHOLOGY	SPT N PP (TSF)		NO.	TYPE	HAMMER PLO BLOWS PER 6 IN	REC ATT	рертн	SAMPLE DESCRIPTION AND DRILLING NOTES
L ,	(0-1.5) TOPSOIL (CL) SILTY CLAY, low Plasticity. +r rootlets; grayish brown 54R 3/2, conesive ware, Soft (1.5-2.0) FILL, asphalt, tr combles; dark wrown to black	Αυ	-	1	SC: Sonic	0.0	2/2		# (0-1.5) TOPSOIL (CL) SIZTY CLAY, LOW plasticity to rootlets; grayish brown 54K 3/2 ennesive wapt, soft # ((1.5-2) FILL dark brn to black, fr Cobbles (asphalt)
E	(20-30) FILL, rock	NA		2		0.0	0.5		#2 (2-3) Ft. Large fill rock material
	(3.0-7.0) (CL) SELTY CLAY, IOW Plasticity, dusky yellowish brown 10VR4/2, ALLUVIUM; conesive, 20> PL, soft.	NĄ		3	50, Sonic	0,0	35/4		#3(3-7) ALLUVIUM (CL) SITTY CLAY, low plasticity; dusky yellowish brown 1048 1/2, cohesiye, wppl, soft
8 9 70 75	(11.0-17.0) (ML) CLAYEY SDIT, 10m Plasticity, tr sand; dusky Yellow brown 10VR 4/2, ALLUVIUM; Conesine, wapl, soft. (11.0-17.0) (SP) SAND, fine, poorly graded; dusky yellow brown 10YR 4/2, ALLUVIUM; hon-conesive, moist, compact.			4	S.C. Sonic	0.0	8/2		#4 (7-11) ALLUVIUM (ML) CLAVEY SIZT Tow plasticity, tr. sand; dusky yellow brown 10 YR 4/2, conestive, umpl, soft. #4 (11-16) ALLUVIUM (SP) SAND, Fine, poorty graden; dusky yellow brown 10 YR 4/2, non-conestive, moist, compact. #4 (16-17) SAA, F-M
13	Below 16 feet, f-m grained (17.0-21.0) (6P) SAND, fine, poorly graded; dusky yellow brown 10VR 4/2, ALLUVIUM; non-conesive, Moist, compact. Below 18.0 feet, olive brown 5Y 4/4, wet			5	sc, Sonic	0.1	9.5/0		#5(12-18) ALLOUTUM (SP) SAND fine poorly graded: dusky yellow brown 104R 1/2, non-conside, moist, compact #5(18-21) SAA, O'live brown 5Y 4/4, wed #5(21-27) ALLOVIUM (CL) SILTY CIAY, 10W D(asticity, some, sand; olive, gray 5Y4/1;
E	(21.0-28.0) (CL) SITY CLAY, low Plasticity, some sand; olive gray syul, Alluvium; conesive, w>pl, soft.								plasticity, some sand; olive gray 544/1.

DEPTH HOLE <u>60</u> PROJ. NO. 14@0093	PROJECT wask well Installation	BORING NO. PMIM
DEPTH SOIL DRILL 60 GA INSP. 46	DRILLING METHOD Sonic 6 - inch	SHEET 2 OF 3
DEPTH ROCK CORE NA WEATHER FOR MOSTLUSUMMY	DRILLING COMPANY Cascade drilling	SURFACE ELEV. ~ 413 ft MSL
ABANDONMENT_NA	DRILL RIG 600C DRILLER Bayden	DATUM_(sround Surface
DEPTHS 24 64 & B 65/ 1/16/15 1 WATER LEVEL CAVE-IN DATE-TIME NOTE	SAMPLER HAMMER TYPEWTWTDROPNA	STARTED 1320 1 17/15
DEPTHS	HOLE LOCATION	COMPLETED TIME DATE TIME DATE
C.S. CHUNK SAMPLE BL BLACK HE HETEROGENEOUS RES	RED 11 GROUP SYMBOL 22 SOIL GROUP NAME VERY LOOSE VLS 0-4	COHESIVE SOILS CONSISTENCY PP(TSF) FINGER PRESSURE VERY SOFT VS <0.25

SAMPLE TYPES		/IATIONS	ORDER OF DESCRIPTION 1) GROUP SYMBOL	NON-COHESIVE SOILS	COHESIVE SOILS
C.S. CHUNK SAMPLE * D.O. DRIVE OPEN (SPT) D.S. DENISON SAMPLE C.S. FOIL SAMPLE C.S. PITCHER SAMPLE S.C. SOIL CORE T.P. THIN-WALLED, OPEN W.S. WASH SAMPLE EL *	R	D	2) SOIL GROUP NAME 3) PRIMARY COMPONENTS 4) SECONDARY COMPONENTS; 5) MINOR COMPONENTS; 6) COLOR 7) WEATHERING 8) STRUCTURE 9) SENSITIVITY 10) CONTAMINATION PRIMARY 130 PRIMARY COMPONENTS; 612 CALCAR	ME" 5 – 12% MOISTURE CONDITION FIX "-Y" 12 – 35% DRY SOIL FLOWS	VERY SOFT
ELEV. DEPTH LIT	(H())()(TSF) NO. TYPE 12(1)	MPLES HAMMER REC BLOWS ER 6 IN ATT	SAMPLE DESCRIPTIO	N AND DRILLING NOTES
E 23					

ELEV. DEPTH	LITHOLOGY	SPT N PP (TSF)	NO.	TYPE	HAMMER PID BLOWS PER 6 IN	REC ATT	DEPT	SAMPLE DESCRIPTION AND DRILLING NOTES
23 24 25 26		ДΩ	5	s.C. sonic				
28 29 30 31 31 33 33 34 35	Below 27.0 feet, olive gray 543/2. (28.0-60.0) (SP) SAND, f. POORLY Graded; olive gray 543/2. ALLUNIUM; non-conesive, wet, Compact. Below 35.0 feet, olive gray 544/1.	NΦ	9	s.c. sonic	0	15/2 15/2		#6(27-28) SAA, Olive gray 5 1/2 #6(28-35) ALLOVIUM (SP) SAND, f, poorly gracied, Olive gray 543/2, non-conesive, wet compact #6(35-37) SAA, Olive gray 544/1
37 38 39 40 41 42 44	Below 370 feet, olive brown 5444	NΑ	7	5C. Sonic	O . 2	10		#7 (37-47) SAA. Allve brown 544/4

DEPTH SOIL DRILL 60 GA INSP. LAB DRILLING METHOD SONIC 6-INCM DEPTH ROCK CORE NA WEATHER 2°F Mod Samply DRILLING COMPANY Cascade Drilling ABANDONMENT NA DRILLING COMPANY Cascade Drilling DEPTHS 2464 BGS 1 / 16 IS WATER LEVEL CAVE-IN DATE-TIME NOTE DEPTHS 1 / 10 IS SAMPLE TYPES 1 / 10 IS COLLAYED) WATER LEVEL CAVE-IN DATE-TIME NOTE DEPTHS 1 / 10 IS SAMPLE TYPES 1 / 10 IS SAMPLE OCCOMPANY COMPONENTS 2 IS SILT 3 IS ILT 3 IS ILT 3 IS ILT SILT 3 IS ILT 3 IS ILT SILT 3 IS ILT 3 IS ILT SAMPLE DESCRIPTION 3 IS ILT NON-COHESIVE SOILS 1 / 10 IS ILS RELATIVE DENSITY BLOWS VERY LOOSE VLS 0-4 LOOSE VERY DENSE VDN >60 ONTAWINATION 7 IS ADD VERY LOOSE VLS 0-4 LOOSE VERY DENSE VDN >60 ONTAWINATION 7 IS ADD NON-COHESIVE SM SOIL STRUCTURE 7 IS ADD 10 IS ILT 1 IS ADD 1 IS ILT 1 IS ADD	SHEET <u>3</u> OF <u>3</u> SURFACE ELEV. ~ 413 ft MSL DATUM Ground Surface STARTED 1320 1 1/7/15
ABANDONMENT NA DEPTHS	STARTED 1320 177 15 TIME PATE COMPLETED TIME DATE CONSISTENCY PP(TSF) FINGER PRESSURE VERY SOFT VS <0.25 EXTRUDES SOFT S 0.25-0.5 MOLDS EASILY FIRM FM 0.5-1 MOLDS STIFF ST 1-2 THUMB INDENTS VERY STIFF VST 2-4 THUMBNAIL INDENTS HARD H >4 RESISTS THUMBNAIL WATER CONTENT-W W < PL CANNOT ROLL 4 mm THREAD W ~ PL CAN ROLL THREAD 2 - 4 mm
ABANDONMENT NA DEPTHS 24 64 6 BGS	STARTED 1320 177 15 TIME PATE COMPLETED TIME DATE CONSISTENCY PP(TSF) FINGER PRESSURE VERY SOFT VS <0.25 EXTRUDES SOFT S 0.25-0.5 MOLDS EASILY FIRM FM 0.5-1 MOLDS STIFF ST 1-2 THUMB INDENTS VERY STIFF VST 2-4 THUMBNAIL INDENTS HARD H >4 RESISTS THUMBNAIL WATER CONTENT-W W < PL CANNOT ROLL 4 mm THREAD W ~ PL CAN ROLL THREAD 2 - 4 mm
WATER LEVEL CAVE-IN DATE-TIME NOTE DEPTHS	COMPLETED TIME PATE TIME DATE COHESIVE SOILS CONSISTENCY VERY SOFT SOC35 - 0.5 MOLDS EXTRUDES SOFT SOC5 - 0.5 MOLDS EASILY FIRM FM 0.5 - 1 MOLDS STIFF ST 1 - 2 THUMB INDENTS VERY STIFF VST 2 - 4 THUMBNAIL INDENTS HARD H > 4 RESISTS THUMBNAIL WATER CONTENT - W W < PL CANNOT ROLL 4 mm THREAD W ~ PL CAN ROLL THREAD 2 - 4 mm
SAMPLE TYPES A.S. AUGER SAMPLE C.S. CHUNK SAMPLE D.D. DRIVE OPEN (SPT) D.S. DENISON SAMPLE P.S. FOIL SAMPLE S.C. SOIL CORE C.C. COARSE LYD LAYERED MIC MICACEOUS S.C. SOIL CORE T.P. T.P. THIN-WALLED, PISTON W.S. WASH SAMPLE T.P. THIN-WALLED, PISTON W.S. WASH SAMPLE T.P. THIN-WALLED, PISTON W.S. WASH SAMPLE T.P. THIN-WALLED, PISTON T.P. FINE T.P. THIN-WALLED, PISTON T.P. FINE T.P. THIN-WALLED, PISTON T.P. FINE T.P. THIN-WALLED, PISTON T.P. FINE T.P. THIN-WALLED, PISTON T.P. FINE T.P. THIN-WALLED, PISTON T.P. THIN-WAL	COHESIVE SOILS CONSISTENCY VERY SOFT VS <0.25 EXTRUDES SOFT S 0.25 - 0.5 MOLDS EASILY FIRM FM 0.5 - 1 MOLDS STIFF ST 1 - 2 THUMB INDENTS VERY STIFF VST 2 - 4 THUMBNAIL INDENTS HARD H >4 RESISTS THUMBNAIL WATER CONTENT - W W < PL CANNOT ROLL 4 mm THREAD W ~ PL CAN ROLL THREAD 2 - 4 mm
A.S. AUGER SAMPLE C.S. CHUNK SAMPLE D.O. DRIVE OPEN (SPT) D.S. DENISON SAMPLE F.S. FOIL SAMPLE C.S. CHUNK SAMPLE C.S. CHUNK SAMPLE D.S. DENISON SAMPLE C.S. CHUNK SAMPLE C.S. CHUNK SAMPLE D.S. DENISON SAMPLE C.S. CHUNK SAMPLE C.S. CHUNK SAMPLE D.S. DENISON SAMPLE C.S. CHUNK SAMPLE D.S. DENISON SAMPLE C.S. COARSE C.S. COARSE C.S. COARSE C.S. COARSE D.S. PITCHER SAMPLE C.S. COHESIVE D.S. DENISON SAMPLE C.S. COARSE D.S. PITCHER SAMPLE C.S. COHESIVE D.S. PITCHER SAMPLE C.S. COHESIVE C.S. COHESIVE C.S. COHESIVE D.S. SOIL CORE C.S. COHESIVE C.S. COHESIVE C.S. COHESIVE C.S. COHESIVE D.S. SOIL CORE C.S. SOIL	COHESIVE SOILS CONSISTENCY VERY SOFT VS <0.25 EXTRUDES SOFT S 0.25 - 0.5 MOLDS EASILY FIRM FM 0.5 - 1 MOLDS STIFF ST 1 - 2 THUMB INDENTS VERY STIFF VST 2 - 4 THUMBNAIL INDENTS HARD H >4 RESISTS THUMBNAIL WATER CONTENT - W W < PL CANNOT ROLL 4 mm THREAD W ~ PL CAN ROLL THREAD 2 - 4 mm
C.S. CHUNK SAMPLE BL BLACK HE HETEROGENEOUS N.S. DENISON SAMPLE C.S. CHUNK SAMPLE BL BLACK HE HETEROGENEOUS N.S. DENISON SAMPLE C.S. COAVE-IN D.S. DENISON SAMPLE C.S. COAVE-IN D.S. DENISON SAMPLE C.S. COAVE-IN M. MEDIUM P.S. PITCHER SAMPLE S.C. SOIL CORE S.C. SOIL CORE S.C. SOIL CORE T.P. THIN-WALLED, OPEN T.P. THIN-WALLED, PISTON D DRY N.S. WASH SAMPLE EL ELONGATED N.S. NON-COHESIVE N.S. WASH SAMPLE EL ELONGATED N.S. NON-COHESIVE N.S. WASH SAMPLE T.P. THIN-WALLED, PISTON D DRY N.S. WASH SAMPLE S.C. SOIL CORE T.W. WASH SAMPLE S.C. SOIL CORE T.W. WASH SAMPLE S.C. SOIL CORE T.W. WASH SAMPLE S.C. SOIL CORE T.W. WASH SAMPLE S.C. SOIL CORE T.W. WASH SAMPLE S.C. SOIL CORE T.W. WASH SAMPLE S.C. SOIL CORE T.W. WASH SAMPLE S.C. SOIL CORE T.W. WASH SAMPLE S.C. SOIL CORE T.W. WASH SAMPLE S.C. SOIL CORE T.W. WASH SAMPLE S.C. SOIL CORE T.W. WASH SA	VERY SOFT VS <0.25 EXTRUDES SOFT S 0.25 - 0.5 MOLDS EASILY FIRM FM 0.5 - 1 MOLDS STIFF ST 1 - 2 THUMB INDENTS VERY STIFF VST 2 - 4 THUMBNAIL INDENTS HARD H >4 RESISTS THUMBNAIL WATER CONTENT - W W < PL
D.S. DENISON SAMPLE F.S. FOIL SAMPLE F.S. FOIL SAMPLE C. COARSE CIN CAVE-IN M. MEDIUM MEDIUM MICACECOUS S.C. SOIL CORE * T.O. THIN-WALLED, OPEN T.P. THIN-WALLED, PISTON W.S. WASH SAMPLE EL ELONGATED NP NON-PLASTIC NP NOTE SIZE MOT HOMOGENEOUS RX ROCK RND ROUNDED SAT SATURATED SATURATED SATURATED SATURATED SATURATED SATURATED SATURATED SATURATED SATURATED SATURATED SATURATED SATURATED SATURATED SATURATED SATURATED SOLOGIC COMPONENTS; SIMINOR	FIRM FM 0.5 - 1 MOLDS STIFF ST 1 - 2 THUMB INDENTS VERY STIFF VST 2 - 4 THUMBNAIL INDENTS HARD H >4 RESISTS THUMBNAIL WATER CONTENT - W W < PL
P.S. PITCHER SAMPLE S.C. SOIL CORE SIZE S.C. SOIL CORE S.C. SOIL CORE SIZE S.C. SOIL CORE MOT MOTTLED S.S. SILT S.S. SILT S.S. SILT S.S. SILT S.S. SILT S.S. SILT S.S. SILT S.S. SILT S.S. SILT S.S. SILT S.S. SILT S.S. SILT S.S. SILT S.S. SILT S.S. SILT S.S. SILT S.S. SILT S.S. SOME S.S. SILT S.S. STRUCTURE	VERY STIFF VST 2 − 4 THUMBNAIL INDENTS HARD H >4 RESISTS THUMBNAIL WATER CONTENT - W W < PL CANNOT ROLL 4 mm THREAD W ~ PL CAN ROLL THREAD 2 − 4 mm
* T.O. THIN-WALLED, OPEN CLY CLAYEY DRY NON-COHESIVE TO NON-CO	WATER CONTENT - W W < PL CANNOT ROLL 4 mm THREAD W ~ PL CAN ROLL THREAD 2 - 4 mm
*	W < PL CANNOT ROLL 4 mm THREAD W ~ PL CAN ROLL THREAD 2 - 4 mm
FRAG FRAGMENTS PP POCKET PEN. WR WEIGHT OF RODS 14 MOISTURE/WATER CONTENT 15) DENSITY/CONSISTENCY *NOTE SIZE FRAG FRAGMENTS PP POCKET PEN. WR WEIGHT OF RODS 14 MOISTURE/WATER CONTENT 15) DENSITY/CONSISTENCY SAMPLES	• •
ELEV. SPT N SAMPLES E	WYPE CAN ROLL THREAD <2 IIIII
ELEV. LITHOLOGY STIN HAMMED TO SAME TO	
ELEV. DEPTH LITHOLOGY PP (TSF) NO. TYPE BLOWS PER 6 IN ATT	ON AND DRILLING NOTES
PER 6 IN ALL TO THE PER 6	
- 45 - - - - - - - - -	
E NA = 7 Sonic	
E	
F-47 #8(47-54) SAA	
<u></u>	
E	
F-49	
E	
F _	
	·
[
E	
	n-c sand, tr 54R 76
sand, tr SYR 56 coloring	
F	
<u> </u>	
E	
54	
#9(57-60) SAA:	
$\begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 $	
End of	
End of Bosenole at 60 feet Bortiole	
Below ground surface	
F	
E	
<u>├</u>	
E	
<u></u>	

Field Boring Log

1	TH ROCK CORE NA WEATHER:	11 Sulav	DR	II I IN	T <u>WGK U</u> G METHOD <u>S</u>		, ·		BORING NO. PMID SHEET OF	
DEF (DELA	PTH ROCK CORE NA WEATHER ANDONMENT NA PTHS 24724866 1 1 10 15 WATER LEVEL CAVE-IN DATE-TIME AMPLE TYPES ABI	NOTE NOTE		DR SA	ILL R MPLE	IG 600 C R HAMMER T DCATION <u>E.</u>	YPE	N	DRILLER Barden	SURFACE ELEV. ~413 ft MSL DATUM Ground Surface STARTED 1323 1 1/6/15 TIME DATE COMPLETED 1520 1 1/6/15 TIME DATE
A.S. C.S. * D.O. D.S. F.S. P.S. S.C. * T.O. * T.P.	AUGER SAMPLE CHUNK SAMPLE DRIVE OPEN (SPT) DENISON SAMPLE FOIL SAMPLE CIN CAVE-IN DRIVEN SAMPLE CIN CAVE-IN MM MIC MIC CAVE-IN MOT MC THIN-WALLED, OPEN THIN-WALLED, PISTON WASH SAMPLE FL FL FL FL FL FL FL CHUNK SAMPLE BL BLACK HE HE HE HE HO HO HO HO HO HO HO HO HO HO HO HO HO	MOGENEOUS YERED EDIUM CACEOUS DITTLED DIST N-COHESIVE N-PLASTIC 'ANGE GANIC CKET PEN.	 ⊧R	WEIGH	EDED RATED ER LEVEL IT OF HA	1) GROUP S 2) SOIL GRC 3) PRIMARY 4) SECONDA 5) MINOR OC 6) COLOR 7) WEATHER 8) STRUCTU 9) SENSITIVI 10) CONTAMI 11) MINEROL 2) ORIGIN; 12) ORIGIN; 13) BEHAVIOF 14) MOISTURI 15) DENSITY/(UP NAME COMPONENTS ARY COMPONENTS; RING RE TITY NATION DGY R (CO/NC) EWATER CONTI	PRC "TR/ "SOI PRE "ANI	SELATIVE DENSITY BLOWS VERY LOOSE VLS 0 - 4 VERY LOOSE VLS	COHESIVE SOILS CONSISTENCY ERY SOFT VS <0.25 EXTRUDES OFT S 0.25 - 0.5 MOLDS EASILY IRM FM 0.5 - 1 MOLDS ERY STIFF VST 1 - 2 THUMB INDENTS ERY STIFF VST 2 - 4 THUMBNAIL INDENTS ARD H >4 RESISTS THUMBNAIL VATER CONTENT - W V PL CANNOT ROLL 4 mm THREAD (> PL CAN ROLL THREAD 2 - 4 mm V> PL CAN ROLL THREAD 2 2 mm
DEPT	H	SPT N PP (TSF)		NO.	TYPE	HAMMER HAMMER BLOWS PER 6 IN	REC ATT	DEPTH	SAMPLE DESCRIPTION	AND DRILLING NOTES
	(0.0-1.0) TOPSOIL (CL) SITTY CLAY, low Plasticity, tr rootlets; grayish brown 54R3/2; conesing w>pl. soft. (1.0-2.5) SAA, some red brick fragments, tr coarse gravel	NA		١	S.C. sonic	A EK O IN	2.5		#1 (0-1) TOPSOIL (L) SII- tr rootlets; gravish br W>PL, soft (1-2.5) SAA, some red 1 Coarse gravel.	brick fragments, tr
3	(2.5-9.0) (CL) SELTY CLAY, 10W Plasticity; dusky yellowish brown 10YR 4/2, ALLUVIUM; conesive, wal, soft.	NA		2	S.C. Sonic	0.0	4.0	5 —	Hand auger used to clear refusal on brick tragments #2 (2.5-7.0) ALLUVIUM (c plasticity; dusky yellow conesine, word, sol	L) STITY CLAY. /OW wish brown 104R 4/2,
- 7 - 8 - 9 - 10 - 11	(9:0-16:0) (ML) CLAYEY SIII, low plasticity to fine sand; ausky yellow brown 10484/2, ALLUVIUM; conesive, wapl, soft.	NA			S.C.	0.0	\tag{\alpha}		#3 (8.0-9.0) SAA #3 (9.0-16.0) ALLUVIUM (A triine sand; dusky yel Conesive, wape, soft	low brown 104R 4/2,
-14 -15 -16 -17 -18 -19	Plasticity; olive gray 5432. ALLUVIUM; conesive, w>PL, soft.	7 - ·			s.c.	6.1	9/10		#3 (16-A) ALLUVIUM (SP) SAN dusky yellow brown 16 moist, soft. #4 (17-24:5) ALLUVIUM (o plasticity, olive gray w>PL, soft.	CL) SILTY CLAY, low

#4 (22-22,5) clay Lense

(22.0-22.5) way lense, high plasticity

DEPTH HOLE <u>/ 07</u> PROJ. NO. <u>142 00 93</u>	PROJECT WGK Well Installation	BORING NO. PMID
	DRILLING METHOD Sonic - Ginch	_ SHEET _ 2 OF 5
DEPTH ROCK CORE NA WEATHER 20's Mostly Sunny	DRILLING COMPANY Cascade . Trilling	SURFACE ELEV. ~ 413 ft MSL
ABANDONMENT NA	DRILL RIG 600c DRILLER Barden	
DEPTHS 24.72 ft B65/ / 1/16/15 /	Janach Sarger	DATUM Ground Surface
DEPTHS DATE-TIME NOTE	HOLE LOCATION E. St. LOUIS	STARTED <u>/323 1/6/15</u>
(DELAYED) WATER LEVEL CAVE-IN DATE-TIME NOTE	TIGEL ECCATION E. ST. LOUIS	COMPLETED 1323 1/6/15
SAMPLE TYPES ABBREVIATIONS	ORDER OF DESCRIPTION NON-COHESIVE SOILS	COHESIVE SOILS

AMPLE TYPES AUGER SAMPLE BL BLACK HE HETEROGENEOU DENISON SAMPLE C COARSE FOIL SAMPLE CO COHESIVE SOIL CORE SOIL CORE THIN-WALLED, PISTON D WASH SAMPLE FL FL FLAT FRAG FRAGMENTS FRAG GRAY GRAY HE HETEROGENEOU LYD LAYERED HO HOMOGENEOU LYD LAYERED MIC MICACEOUS MIC MICACEOUS MIC MICACEOUS MIC MOTTILED MOTTHED NON-PLASTIC ORG ORGANIC FRAG FRAGMENTS PP POCKET PEN PLASTIC LIMI	R		PP(TSF) FINGER PRESSURE <0.25 EXTRUDES 0.25 - 0.5 MOLDS EASILY 0.5 - 1 MOLDS 1 - 2 THUMB INDENTS 2 - 4 THUMBNAIL INDENTS >4 RESISTS THUMBNAIL W ROLL 4 mm THREAD THREAD 2 - 4 mm
--	---	--	---

NOTESI	IGL GRAVEL IPL PL	ASTIC LIMIT	! Y	YELLOW 15) DENSITY/CONSISTENCY			CONSISTENCY		WEI WITH FREE WATER W> PL CAN ROLL THREAD <2 mm
ELEV. DEPTH	LITHOLOGY	SPT N PP (TSF)		NO.	TYPE	HAMMER PID BLOWS PER 6 IN	REC ATT	DEPTH	SAMPLE DESCRIPTION AND DRILLING NOTES
_ 2φ 	(24.8~(3.5)(SP) SAND fine; dusky yellow brown 10484/z, ALLUVIUM; non-conesive, wet, compact.	NA		4	s.c. sonic				#4(24.5-27) ALLUVIUM (SP) SAND, fine, dusky yellow brown 10 YR 4/2, non-conesive, wet, compact.
28 -29 -30 -31 -32 -33 -34 -35	Below 36.0 feet, moderate olive brown 54414.	NA		5	s.c.	0.0	9 10		#5(36-37) SAA moderate olive brown 5444
-37 -38 -39 39 40 41 42 43	Below 37.0 feet, clive gray 54312	NA.		6	S.C.	· D.2	9.5/20		#6 (37.47) ALLUVIUM (SP) SAND, f-m; Olive gray SY 3/z, non-conside, wet, rompact

Field Boring Log

DEF ABA DEF (DELA A.S. * D.O. D.S. P.S. S.C. * T.P.	YED) WATER LEVEL CAN AMPLE TYPES AUGER SAMPLE BL DRIVE OPEN (SPT) BR DENISON SAMPLE CIN FOIL SAMPLE CIN FOIL SAMPLE CO SOLI CORE THIN-WALLED, OPEN THIN-WALLED, PISTON D WASH SAMPLE FL	GA INSP	E NOT E NOT BBREVIATIO SAYERED EDIUM ICACEOUS ONTLED OIST ON-COHESIVE ON-PLASTIC RANGE RGANIC	NS RES RX RND SAT TR SD SI SI SI SI SI SI SI WH	DR DR DR SA HO RED RESIE ROCK ROUN SAND SILT SILT SILT SICT SAND WATER WEIGH WATER	ULLINGULLA RATED	ORDER C 1) GROUPS 2) SOIL GRO 3) PRIMARY 4) SECOND, 5) MINOR CO 6) COLOR 7) WEATHEL 8) STRUCTL 9) SENSITIV 10) CONTAM 11) MINEROL 12) ORIGIN; AMMER 13) BEHAVIOR	TYPE STANDAME COMPONENTS ARY COMPONENTS; RING JUP RING RING RE RING RE RE RE RE RE RE RE RE RE R	NA OUIS	DRILLER Barden WT. NA DROP NA PLUS DESCRIPTION: LUSI: PLASTICITY DIC SIZE, GRADING SIL: SIZE, GRADING SIL: SIZE, GRADING SIXE, GRADING SHEAR, ROCKTYPE DACE" 0 – 5% ME" 5 – 12% GEFIX "-Y" 12 – 35% MON-COHESIVE SOILS RELATIVE DENSITY BLOWS VERY LOOSE VIS 0 – 4 LOOSE LS 4 – 10 COMPACT CP 10 – 30 DENSE DN 30 – 50 VERY DENSE VDN > 50 MOISTURE CONDITION DRY SOIL FLOWS	SHEET 3 OF 5 SURFACE ELEV. ~ 413 ftmsl DATUM Ground Surface
* NOTE	SIZE IGL	GRAVEL PL PL	SPT N	WR	WEIGH YELLO		DDS 14) MOISTUR 15) DENSITY/	E/WATER CONT CONSISTENCY	T =	WET WITH FREE WATER	W>PL CAN ROLL THREAD <2 mm
DEPI	н		PP (TSF)		NO.	TYPE	PID BLOWS PER 6 IN	REC	DEPTH	SAMPLE DESCRIPTION	N AND DRILLING NOTES
	Below 47.0 feet,, some fines, or grown	m-c grained, avel, tr river	А		φ	S.C. Sonic				#7 (47-57) ALLUVIUM (s	
	Below 57.0 feet, mr.	arained poorly	NA		7	S.L. Sonic	0.0			river wood; olive gr wet, compact	trace gravel, trace
-64	Graded, to fives, 2 grad 543/2, Grad 543/2, (65.0-71.0) (SP) SAND, of Graded, to fines, to graded, to fines, to gray 544/1, ALLU	wood, oder	NΑ		8 5	S.C.	0.0			#8 (63.5-65) - weathered u	covel; elive gray 54 3/7, pompact Desod, organic order SAND, M-C, poorly grades

non-cohesive,

Field Boring Log

DEPTH HOLE PROJ. NO. <u>142.00</u>	093 PROJECT WGK WEll Installation	BORING NO. PMID
DEPTH SOIL DRILL _/07 GA INSP. LAB	DRILLING METHOD Sonic Grinch	SHEET 4 OF 5
DEPTH ROCK CORE_NA WEATHER 2015 Miss		SURFACE ELEV. ~ 413 FLMSL
ABANDONMENT NA	DRILL RIG LOOD C DRILLER_	DATUM Comma Surface
DEPTHS 24.72 ft BGS j 1/16/15 j WATER LEVEL CAVE-IN DATE-TIME N	SAMPLER HAMMER TYPE NA WT. NA DROP NA	STARTED 1323 1 1/16/15
DEPTHS CONTROL ON THE PLANT OF THE PARTY OF	HOLE LOCATION E. St. LOUIS	COMPLETED 1520 1 1/6/15
SAMPLE TYPES ABBREVIAT	TIONS ORDER OF DESCRIPTION NON-COHESIVE SOILS	COHESIVE SOILS

(DELAYED) WATER LEVEL CAVE-IN DATE SAMPLE TYPES	ARRENIATIONS	HOLE LOCATION E, St, Lovis		COMPLETED 1520 1 1/0 1/5 DATE
A.S. AUGER SAMPLE C.S. CHUNK SAMPLE BL BLACK D.S. DENISON SAMPLE C.S. CHUNK SAMPLE D.S. DENISON SAMPLE C. COARSE F.S. FOIL SAMPLE C. COARSE CIN CAVE-IN CAVE-IN CL CL T.O. THIN-WALLED, OPEN T.P. THIN-WALLED, OPEN W.S. WASH SAMPLE EL ELONGATED F FINE	DG ORANGE WL DRG ORGANIC WH PP POCKET PEN. WR	RED	NON-COHESIVE SOILS	COHESIVE SOILS CONSISTENCY PP(TSF) FINGER PRESSURE VERY SOFT VS <0.25
		CAMPLES		

	LEV.		SPT N		·		SAMPLES		Ŧ	
DE	PTH	LITHOLOGY	PP (TSF)	.	NO.	TYPE	HAMMER BLOWS PER 6 IN	REC	DEPTH	SAMPLE DESCRIPTION AND DRILLING NOTES
E			AN		8		ZI ZIK BIK			
上	67	1	NA		0	sonic	r			
F									~~~ <u>~~</u>	
E	i O									#9 (67-71) ALLUVIUM (SP) SAND, M-C, DOORLY
E	68								. —	graded tr fines traravels; olive arou
F	_	·]		5VR 4/1, non-cohesive, wet, compact
-	69			\exists						
F				∃			•			
E,	70							-		
E				=						
<u> </u>	71			\exists	9	l		7.5		
F	-	(71.0-77.0) (GP) GRAVEL, fine, Poorly graded, some m-c		\exists	'	5.C.		10		#9(71-77) ALLUVIUM (GP) GRAVEL, fine, poorly
E,	1	FINES SOME calles dive	Ay	\exists		sonic	0.0			graded, some M-C fines some complete
E	12	gray SVR4/1. ALLOUIUM; non- conesive, wet, compact.		\exists					\dashv	Blive gray 54R 4/1, non-conesive, wet.
F.	- 1	tot, wet, compact.		=						compact.
F	73			\exists	i				4	
E	l			Ⅎ				1	ŀ	
1-7	4			\exists		- 1		.		
F				\exists						
 	5		1	\exists						
E	İ			=					\neg	
E.	16		l	7	ı				-	
F				\exists		İ			+	
F,	, ,		,	\exists					ŀ	
E'	77	973.0-86.0) (SP) SAND, fine, poorly								
F				7		.			4	#10 (77-86) ALLOVIUM (SP) SAND, fine; olive
F 7	18	ALLUVIUM; non-conesive, wet,	1	\exists					4	gray 54R4/1, non-conesive, wet, compact
E				\exists					-	
F-7	9			크					4	
F		·		\exists					ŀ	
F-8	30								.	
E				\exists					7	
\vdash ϵ	,		.	_=		.		8		
F	.			\exists				10		
E8	,		AN	\exists 1	0 5	nic nic			1	
F				7			0.0		+	
F				\exists					-	
F-8	১			긬					+	
F				7					一	
-84	7	1	.	∃ .					-	
E				\exists					L	
_8:	5		.	=					\bot	
Ė.				\exists					-	
-84	0 /10	6.0-87.0) (CL) STETY CLAY, 10W		\exists					-	tip (9/2 C7) Ni
E	1,0	asticity; olive gray 5484/1		\exists					7	FID (86-87) ALLUVIUM (CL) STLTY CLAY, 10W
L_8;	A Sc	asticity; olive gray 5484/1, LLUVIUM; conesive, WAPL,		\exists					一	plasticity; olive gray 54R 4/1, conesive,
Ė Š	ks:	7.0-97.0) (SP) (-POUEL FUED		\exists					_[
- <i>8</i> 8	Po tro	oorly graded, some fines are combles; olive gray stery; LLUVIUM; non-conesive, wet, compa	VA	\exists	50 1	ب <u>ر</u> ع ن			#	1 (87-97) ALLUVIUM, (GP) GRAVEL, five, poorly graded.
	ΑÚ	LUVIUM; non-conesive, wet, compa	ut.	_						ome times, trace cobbles, olive arou 5 VR 41, non-conesive, we to some
Dec 20									Ο,	THE COOLSTON ON 11, NON-COMESIVE, WESTERN

Golder

DEPTI ABAN DEPTI (DELAYE SAN A.S. AU C.S. CH * D.O. DE F.S. FOI S.C. SO * T.O. TH W.S. WA * * * * * * * * * * * * * * * * * * *	H SOIL DRILL 107 GA INSP. 1 H ROCK CORE NA WEATHER 2 DONMENT NA HS 24.72 H 8651 J J / 16/15 WATER LEVEL CAVE-IN DATE-TIME HS J J J J J J J J J J J J J J J J J J J	NOTE NOTE NOTE NOTE NOTE BREVIATION RAY TEROGENEOUS YERED DIUM CACEOUS DITLED DIST NO-COHESIVE N-PLASTIC LANGE GANIC CKET PEN. ASTIC LIMIT	S RES RX RND SAT SD SI SIY SM TR WL WH WWR	DRILL RIG SAMPLER HAMMER TYPE NA WT. DROP NA HOLE LOCATION E. St. Louis PRED RED RESIDUAL RESIDUAL RESIDUAL ROUNDED SATURATED SAND SILT SILT SILTY SOME TRACE WT. DROP NA WT. DROP NA WT. DROP NA WT. DROP NA WT. DROP NA WT. DROP NA NON-COHESIVE SOILS RELATIVE DENSITY BLOWS VERY LOOSE VLS 0 - 4 VOONPACT CP 10 - 30 DENSE DN 30 - 50 VERY DENSE VDN >50 VERY DENSE VDN >50 VERY DENSE VDN >50 VERY DENSE VDN >50 VERY DENSE VDN >50 WTRACE WTER LEVEL WEIGHT OF HAMMER VEIGHT OF RODS YELLOW 13) BEHAVIOR (CO/NC) WEIGHT OF RODS YELLOW 15) DENSITY/CONSISTENCY WEIGHT OF RODS YELLOW DROP NA NON-COHESIVE SOILS RELATIVE DENSITY BLOWS VERY LOOSE VLS 0 - 4 VOONPACT CP 10 - 30 DENSE DN 30 - 50 VERY DENSE VDN >50 VERY						SHEET 5 OF 5 SURFACE ELEV. ~ 413 ftmst DATUM Ground Surface STARTED 1323 1/6/15
ELEV. DEPTH	LITHOLOGY	SPT N PP (TSF)		NO.	TYPE	HAMMER PID BLOWS PER 6 IN	REC ATT	DEPTH	SAMPLE DESCRIPTION	N AND DRILLING NOTES
99 		N		!	s.c. sonic	Ø . O	8/0			
	(97.0-99.0) (SP) SAND, f-M, POORLY graded, tr gravel, tr cobbles; Olive gray 573/2, ALLUVIUM; non-conesive, wet, compact. (199.0-100.0) (GP) GRAVEL, F. poorly graded, trace cobbles; Olive gray SY3/2, ALLUVIUM; non-conesive, wet, compact. (100.0-107.0) (SP) SAND, f-M, poorly graded, tr gravel, tr cobbles; Olive gray 58/2, ALLUVIUM; non-conesive, wet, compact.	NA		12	sonic	0.0	7/10		graded, trace cobble compact #12 (100-102) ALLUVIUM graded, tr gravel,	tr combles; olive gray ive, wet, compact (SP) GRAVEL, f, poorly es, non-conside, wet, (SP) SAND, f-M, poorly tr comples; Olive gray e, wet, compact
	Fred of Borenale at 107.0 feet Below ground Surface									

ATTACHMENT B WELL CONSTRUCTION LOGS/FORMS (GOLDER AND IDPH)

FLUSH-MO	UNT MONITORING	G WELL CONSTRUCTION LOG PMIM
PROJECT NAME: WGK-Well IN	stallation	PROJECT NUMBER: 1420093
SITE NAME: WGK-UTM	13 (4.1.4.1.0.1	LOCATION: PMIM
CLIENT: Solutia Inc.		SURFACE ELEVATION: ~ 413 ft MSL
GEOLOGIST: L. Bindner	NORTHING: 7118	
DRILLER: Barden		VEL: 24.64 ft BGS COMPLETION DATE: 1/8/15
DRILLING COMPANY: Cascade D		DRILLING METHODS: Sonic
LOCKING CAP: (VES) NO)	STEEL FLUSH MOUNT W GI TO TO TO TO TO TO TO TO TO T	ELL PROTECTER ROUND SURFACE ELEVATION: ~ 413 ft MSL DP OF CASING ELEVATION: 412.80 ft MSL AMETER OF RISER PIPE (in.): 2-IN SS Type 304 AMETER OF BOREHOLE (in.): 6-IN DNCRETE SEAL DEPTH (ft. bgs): 49.64 OP OF BENTONITE SEAL DEPTH (ft. bgs): 49.64 DP OF SAND PACK DEPTH (ft. bgs): 49.64 DP OF SAND PACK DEPTH (ft. bgs): 49.64 OP OF SAND PACK DEPTH (ft. bgs): 49.64
TOTAL DEPTH OF BOREHOLE: 61.41 ft BGS ADDITIONAL NOTES: Screen length	TO TO SO SI AI BO BO TO TO TO TO TO TO TO TO TO TO TO TO TO	ENTRALIZER (yes 10) - TYPE: DP OF SCREEN DEPTH (ft. bgs): 51.64 YPE OF SCREEN: SS Type. 304 CREEN SLOT SIZE (in.): 0.010 (Ten Slot) ZE OF SAND PACK: passes NSF BIOD specs K+ E #-5 MOUNT OF SAND: 6 x 5016 bags DITTOM OF SCREEN DEPTH (ft. bgs): 61.41 DITTOM OF FILTER PACK (ft. bgs): 61.41 YPE AND AMOUNT OF BACKFILL: None INChes = 9.77083 (1. inches

PREPARED BY: LAB

DJECT NAME: WGK-Well Installation	PROJECT NUMBER: 1420093
ENAME: WGK-LTM	LOCATION: PMID
ENT: Solutia Inc.	SURFACE ELEVATION: ~ 4/3 ft MSL
DLOGIST: L. Bindner NORTHING: 71	
	RLEVEL: 24.72 ft BGS COMPLETION DATE: 1/8/14
LLING COMPANY: Cascade Drilling	DRILLING METHODS: Sonic
CKING CAP: (YES/NO)	TYPE AND AMOUNT OF ANNULAR SEAL: 9x94/bs Portland Cement
	Quick Gel TOP OF BENTONITE SEAL DEPTH (ft. bgs): 96.42 TYPE AND AMOUNT OF BENTONITE SEAL: 1x 5016 bag benton to the control of the control
	CENTRALIZER (yes / 100) - TYPE:
	— BOTTOM OF SCREEN DEPTH (ft. bgs): 106.45
TAL DEPTH : 106.45	— BOTTOM OF FILTER PACK (ft. bgs): 106,45 — TYPE AND AMOUNT OF BACKFILL:

State of Illinois Department of Public Health

WATER WELL CONSTRUCTION REPORT Complete within 30 days of well completion and send to the appropriate Health Department

100.10	THE RESERVE AND ADDRESS OF THE PERSON NAMED IN	
Del	nt Form	

1. Type of Well	13. Property Owner JOOT . //Liwais Dept. of Trobuvell # PMIM
- Balance Wells - Octoor Clareston for A	14. Driller; Todd Schmalfieldt (Chris Barden) License # 092-008879
a. Driven Welt: Casing Diameter (in.) Depth (ft.)	15. Name of Drilling Company: CASCADE DRILLING 16. Permit Number:
b. Bored Well: Casing Diameter (in.) Buried Slab?	Date Issued: 17. Date Drilling Started: Jan 8, 2015
c. Drilled Well: PVC Casing Formation Packer set at depth of (ft.) 61.41	18. Well Site Address: EMPTY LOT ON THE NE CORNER OF BOND AND BARACK OBAMA AVE.
d. Dritted Weil: Steel Casing Mechanically Driven	19. Township Name: EAST ST. LOUIS Land I.D. #
e. Hole Diameter (in.) 6" to (ft.)61.41; (in.) to (ft.) ; (in.) to (ft.)	0.000 0.000
f. Type of Grout # of bags Grout Weight From (fl.) To (fl.) Tremie Depth (fl.)	20. Subdivision Name: Lot #
CEMENT/ BENTONITE B X 94LB. PORT 46.64' 2.5'	21. Location: a. County St. Clair b. Site Elevation fl. (above msi)
I X SOLB. GEL	c. Township: 2N Range: 10W Section: 14
II X 30CB, GEC	d. NW Quarter of the NE Quarter of the SE Quarter
g. Well Finished within Unconsolidated Materials	
5. Franchischer Charles Control of the Control of t	e. GPS: Lat: Degrees 38 Minutes 37' Seconds 17.8693"
h. Kind of Gravel/Sand Pack Grain Size/Supplier # From (ft.) To (ft.)	Lon: Degrees -090 Minutes 09' Seconds 58.9401"
SAND / PASSES NSF. B100 NO. 1 K&E 61.41 49.64	22. Casing and Liner Information Survey use only
	Diameter (in.) Material, Joint Type From (ft.) To (ft.)
2. Well Use: Monitoring Well Disinfected? No	2 STAINLESS STEEL (304) FLUSH JOINT 51.64 05
3. Date Well Completed: Jan 8, 2015 Dritler's Estimated Well Yield (gpm):	
4. Date Permanent Pump Installed: Set at depth (fl.):	Diameter (in.) Length (ft.) Slot Size (in.) From (ft.) To (ft.)
5. Pump Capacity (gpm):	23. Is the well If yes Thicker I les I les I les I les As
6. Pitless Adapter Model	screened? Yes 2 INCR 5.5. 10 01.41 31.41
and Manufacturer: Attachment to Casing:	24. Water from at a depth of (ft.) To, (ft.)
7. Well Cap Type & Manufacturer: 8" Round SEMCO Flushmount	a. static wate level (ft.) below casing 24.64 which is (in.) above ground
8. Pressure Tank:	b. pumping level is (fl.) pumping (gpm) for (hours)
Working Cycle (gals.): Captive Air? 9. Pump System Disinfected:	25. Earlh Malerials Passed Through From (fl.) To (fl.)
10. Name of Pump Company:	Topsoil and Fill 0 2
11. Pump Installer: License #	Silty Sandy Clay Brown 2 17
37	Fine Brown Sand 17 21
12. Licensed Pump Installation Contractor Signature	Silty Gray Clay 21 28
· · · · · · · · · · · · · · · · · · ·	Poorly Graded Olive Gray and Brown Sand (Wet) 28 61.4
Illinois Department of Public Health IMPORTANCE NOTICE: This state agency is requesting disclosure	
Division of Environmental Health of Information that is necessary to accomplish the statutory 525 West Jefferson Street purpose as outlined under Public Act-0863. <u>Disclosure of this</u>	(Attach 2nd page, if necessary) (If DRY HOLE, fill out log & Indicate how hole was sealed)
Springfield, IL 62761 <u>information is Mandatory</u> . This form has been approved by the	
Forms Management Center,	Tall of Schwelt 1-28-15 License # 092-008879

Licensed Water Well Contractor Signature

State of Illinois Department of Public Health

WATER WELL CONSTRUCTION REPORT Complete within 30 days of well completion and send to the appropriate Health Department

Print	Form
E-FRIDE	LOTTE

1. Type of Well	13. Property Owner: IDOT IL. Dept of trans. Well # PMID
Police Matte Coolea Dispersion fin h	14. Driller: Todd Schmalfieldt (Chris Barden) License # 092-008879
	15, Name of Drilling Company: CASCADE DRILLING 16, Permit Number:
b. Bored Well: Casing Diameter (in.) Buried Slab?	Date Issued: 17. Date Drilling Started: Jan 7, 2015
c. Drilled Well: PVC Casing Formation Packer set at depth of (ft.) 106.45	18, Well Sile Address: EMPTY LOT ON THE NE CORNER OF BOND AND BARACK OBAMA AVE.
d. Dritted Welt: Steel Casing Mechanically Driven	19. Township Name: EAST ST. LOUIS Land LD. #
e. Hole Diameter (in.) 6" to (ft.) 106.5; (in.) to (ft.); (in.) to (ft.)	
f. Type of Grout # of bags Grout Weight From (ft.) To (ft.) Tremie Depth (ft.)	20. Subdivision Name: Lot # 21. Location: a County Se Clair b Site Flevation ft. (above msl)
CEMENT/ BENTONITE 9 X 94LB. PORT 96.42 2.5'	a. County St. Clair
II X SOLB. GEL	c. Township: 2N Range: 10W Section: 14
	d. NW Quarter of the NE Quarter of the SE Quarter
g. Well Finished within Unconsolidated Materials	e. GPS: Lat: Degrees 38 Minutes 37 Seconds 17.82
h M. J. Co., Dr. A. David, Co. of Charles and Charles	
h. Kind of Gravel/Sand Pack Grain Size/Supplier # From (ft.) To (ft.) SAND / PASSES NSF, B100 NO. 1 K&E 106.45 99.42	t.on: Degrees -090 Minutes 09' Seconds 58.91"
SAND / PASSES NSP, 8100 NO. 1 Kaic 100.45 95.42	22. Casing and Liner Information Survey use only
	Diameter (in.) Material, Joint Type From (ft.) To (ft.)
2. Well Use: Monitoring Well Disinfected? No	2 STAINLESS STEEL (304) FLUSH JOINT S1.64 LOS
3. Date Well Completed: Jan 8, 2015 Oriller's Estimated Well Yield (gpm):	
4. Date Permanent Pump Installed: Set at depth (fl.):	Diameter (in.) Length (fl.) Slot Size (in.) From (fl.) To (fl.)
5. Pump Capacity (gpm):	23. Is the well screened? Yes 2 INCH S.S. 5' 010 106.45 101.42
6. Pitless Adapter Model and Manufacturer: Attachment to Casing:	24. Water from at a depth of (ft.) To. (ft.)
Pilausian in bearing.	
7. Well Cap Type & Manufacturer: 8" Round SEMCO Flushmount	
8. Pressure Tank: Working Cycle (gais.): Captive Air? 9. Pump System Disinfected:	b. pumping level is (ft.) pumping (gpm) for (hours)
	25. Earth Materials Passed Through From (fl.) To (fl.)
10. Name of Pump Company:	Topsoli and Fill 0 2
11. Pump Installer: License #	Silty Sandy Clay Brown 2 17
	Fine Brown Sand 17 21
12. Date	Silty Gray Clay 21 28
Licensed Pump Installation Contractor Signature	
Illinois Department of Public Health IMPORTANCE NOTICE: This state agency is requesting disclosure	
Division of Environmental Health of Information that is necessary to accomplish the statutory	Silty Clay Low Plasticity, Olive Gray (See Log) 86 87
525 West Jefferson Street purpose as outlined under Public Act-0863. <u>Disclosure of this</u> Springfield, IL 62761 <u>information</u> is Mandatory. This form has been approved by the	(Attach 2nd page, if necessary) (If DRY HOLE, fill out log & Indicate how hole was sealed)
Forms Management Center.	7080 x Schwert 1-28-15 License # 092-008879

ATTACHMENT C

PHOTOGRAPHS

February 2015 -1- 1420093

Photograph 1 – Cascade sonic drill rig installing groundwater monitoring well PM1D.

Photograph 2 – View looking south from the north of completed flush mount wells PM1M and PM1D. Well PM1M is the closest well in view. The highway pictured in the upper left is Interstate 64/40 and Interstate 55.

February 2015 -2- 1420093

Photograph 3 – Flush mount completion of the PM wells. (PM1M is pictured)

Photograph 4 – Flush mount well completion of the PM wells with lockable well cap.

ATTACHMENT D
SURVEY RESULTS

200 Zahner Place Perryville, Missouri 63775

> (573) 547-1771 Fax (573) 547-1452

1-800-773-1771 zahner@zahnerinc.com

January 28, 2015

Lori Bindner Golder Associates, Inc. 820 S Main St, Suite 100 St. Charles, MO 63301

Dear Ms. Bindner:

The coordinates and elevations for the Sauget, Illinois Plant well locations are as follows:

	Monitoring Wells – Sauget, Illinois									
ID	Northing	Easting	Top of Casing Elevation	Top of Concrete Elevation						
PM1M	711838.03	2296672.04	412.80	413.07						
PM1D	711831.94	2296669.16	412.78	413.41						

Horizontal Datum: State Plane Coordinates NAD83 (2011) Illinois West Zone

Vertical Datum: NAVD88 Date of Survey: 1-22-2015

Sincerely,

Michael D. Zahner, P.L.S. Zahner & Associates, Inc.

At Golder Associates we strive to be the most respected global group of companies specializing in ground engineering and environmental services. Employee owned since our formation in 1960, we have created a unique culture with pride in ownership, resulting in long-term organizational stability. Golder professionals take the time to build an understanding of client needs and of the specific environments in which they operate. We continue to expand our technical capabilities and have experienced steady growth with employees now operating from offices located throughout Africa, Asia, Australasia, Europe, North America and South America.

Africa + 27 11 254 4800
Asia + 852 2562 3658
Australasia + 61 3 8862 3500
Europe + 356 21 42 30 20
North America + 1 800 275 3281
South America + 55 21 3095 9500

solutions@golder.com www.golder.com

Golder Associates Inc. 820 S. Main Street, Suite 100 St. Charles, MO 63301 USA

Tel: (636) 724-9191 Fax: (636) 724-9323

